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Chapter 1

Computational Cognitive
Neuroscience of Language

“Overcoming the formalist point of view also led to a change in the concept of structure. Structures can no longer be
conceived as formal assemblages of symbolic elements connected by means of formal relations. They are now conceived
as natural, organic, qualitatively self-organized and dynamically regulated wholes, as forms, Gestalts or patterns. The
perspective is now organizational, dynamical, and emergential: structures emerge from substrata, be they internal
(neuronal) or external, while symbolic discrete and sequential structures formally described by the classical paradigm
are now equated with qualitative, structurally stable and invariant structures emerging from an underlying dynamics.”

Petitot

Morphogenesis of Meaning

1.1 A Brain that Makes Meaningful Use of Language in Context:
a Dynamic Distributed System

1.1.1 Psycholinguistics and the Visual World Paradigm: Incremental Con-
straint Satisfaction over Multiple Knowledge Sources

For a while, the equation of core language processing to syntactic operations embedded in a strongly modular
and competence-oriented perspective dictated the type of empirical studies and modeling that prevailed in
the analysis of the functioning human language system. Stemming from both a long tradition of linguistic
(Bloomfield, 1962; Chomsky, 1995, 2002) and cognitive (Fodor, 1983) theories, this so-called generative
approach at first provided a strong paradigm against which to interpret empirical results. However it has
become clear in the past decades that this fundamentally analytic approach, narrowly focused on cutting
through the complex human language apparatus to carve out the core language organ, left untouched the
equally complex problem of empirically and theoretically understanding how syntactic operation - and more
generally linguistic operations - could be performed by and integrated within a body with specific sensory-
motor interfaces to a physical and social world. Even within the generativist tradition the question of
interfaces between linguistic and other cognitive systems became central (Jackendoff, 2002).

From an empirical perspective, the desire to quantitatively tap into the interactions between language
and sensory-motor systems led to the development of a new line of psycholinguistic work using the Visual
World Paradigm (VWP) (Huettig et al., 2011) in which subjects produce or comprehend utterances while
they are presented with a related visual scene. Attention-related eye movements are recorded throughout
the task, thus offering a way to link the time series of attentional focuses to the time series defined by the
produced or perceived utterances. The results from this approach replaced a view of the language system in
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Figure 1.1: Informal model of the language processes anchored within a network of interfaces with sensori-
motor systems (adpated from Jackendoff, 1997). Beyond the question of whether or not this informal model
is correct or not (which is an empirical one), from a computational perspective, if one accepts that the data
is at least strong enough to suggest that this type of complex network of interfaces and processes are the
background against which linguistic operations are carried out, the challenge becomes immediately that of
understanding how the behaviors of such a system come to be orchestrated to fit our communicative goals?
Understanding these issues is the core of computational brain theory and therefore should be at the core of
the computational cognitive neuroscience of language.

which syntax processing was a standalone module by a view of the language system functioning essentially as
an incremental constraint-satisfaction system dynamically and opportunistically incorporating data provided
by multiple knowledge sources that include linguistic, perceptual, and conceptual knowledge. Mayberry et
al. (2006) summarize the key results of VWP as follows:

“First, on-line comprehension occurs incrementally and is closely time-locked with attention to
the scene (Tanenhaus et al., 1995). Second, attention to objects in a scene before they are
mentioned in an utterance shows that anticipation plays a vital role in comprehension (Altmann
and Kamide, 1999). Third, all available information sources - linguistic and world knowledge,
as well as scene information are rapidly and seamlessly integrated during online comprehension
(Kamide et al., 2003; Knoeferle et al., 2005; Sedivy et al., 1999; Tanenhaus et al., 1995). Fourth,
sentence comprehension is highly adaptive to the dynamic availability of information from these
multiple sources. Fifth, these sources of information are coordinated: the interaction between
language and visual scene processing is a two-way street.”

These five points are integrated in the best developed conceptual model of situated language compre-
hension, the Coordinated Interplay Account (CIA)(Knoeferle and Crocker, 2006). It is worth insisting and
illustrating the online and opportunistic multi-source satisficing process at play during situated language
processing. Altmann and Kamide (1999) showed how subjects incrementally combine linguistic, visual, and
world knowledge information during a comprehension task. Faced with a visual display showing a cake, two
toys, and a boy, the subjects were faster to fixate the cake upon hearing the verb “eat” in the sentence “the
boy will eat ...” than upon hearing the more general verb “move” in the sentence “the boy will move ...”.
The verb “move” imposes less constraints on the post-verbal patient (i.e., theme) that could be the cake or
any of the two other toys, than the verb “eat” for which “cake” is the only plausible patient. The fact that
such constraints can influence eye movements as soon as the verb is perceived shows the incremental nature
of the combined impact of world knowledge and visual information on language processing.

Addressing the criticism that such an effect could simply be driven by the verb and not by true integration
of linguistic, visual, and world knowledge information, Kamide et al. (2003) used a similar set up but, as
in the reading time study described above, used a combination of agent and verb to constrain the possible
post-verbal patient and its visual referent. Upon hearing the sentence “the man will ride ...”, the subjects
made more anticipatory saccades to the visually presented motorcycle than to the merry-go-round, with the
opposite pattern being measured when the sentence was “the girl will ride ...”. Tapping into production is
empirically much harder but some important results have nevertheless been derived by analyzing descriptions
of a visual scene produced by speakers and linking those to the way they attentionally parse a visual scene.

In addition, by manipulating the saliency landscape of the scene or by cueing attentional focus to specific
regions of the visual scene, the VWP offers a unique opportunity to study the relations between the ways a
scene is cognitively structured by attentional parsing and the types of constructions that are used to describe
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it. Gleitman et al. (2007) showed how perceptual priming impacted syntactic structural choices made during
the production of visual scene description. “Referential priming”, in which a scene referent is presented for
observation before the rest of the scene is made visible, has also been investigated (Myachykov et al., 2011).
Both cases outlined the links that exist between the temporal unfolding of attention, information structures
and ultimately construction choices during production of visual scene descriptions. These results have led to
incremental views of the system in which scene comprehension and sentence formulation occur concurrently
mutually influencing each-other. However, a structural view has also been put forward that suggests that
scene “apprehension precedes formulation” (Griffin and Bock, 2000) with the sentential structure determined
by the conceptual structure built from a scene rather than direct perceptual prominence of individual percep-
tual items (Bock et al., 2004; Griffin and Bock, 2000) The two views seemingly describe mutually exclusive
principles. However, language production may generally involve both an incremental and a preplanning
mechanism (e.g. Levelt, 1993)s, and the production system may shift between these mechanisms based on
the perceived information (Brown-Schmidt and Tanenhaus, 2006).

1.1.2 Neurolinguistics: Studying an Adaptive and Organized Distributed Sys-
tem and its Degradations

Psycholinguistic behavioral results offer a unique window into the temporal dynamics of the complex inter-
actions that weave together linguistic, perceptuo-motor, and cognitive systems in normal subjects. However,
they make no attempt at linking the processes they describe to the underlying neural hardware. Their focus
is on defining functional operations, the type of representations they rest upon, and the type functional
structure that organizes them. It is neurolinguistics that attempts to address the question of how functional
processes relate to neural architectures.

When faced with complex biological systems supporting cognitive functions, the question of the patterns
of degradation the systems exhibit following lesions or perturbation remains both a unique source of in-
formation on the system’s organization and a healthy reminder than brain models need to be able to not
only account for the healthy subjects performances but also display the graceful degradation and resilience
patterns that are displayed by neurological patients.

Neuropsychology

Broca’s aphasics (expressive, or non-fluent aphasia) suffer from brain lesions that result in disfluent asyntactic
speech usually lacking grammatical words, verbal inflections etc. (Gleason et al., 1975; Goodglass and
Berko, 1960; Goodglass, 1968, 1976; Kean, 1977). Importantly, Caramazza and Zurif (1976) found that
Broca’s aphasics were no different than normal subjects when asked to match a picture with canonical active
sentences such as “the lion is chasing the fat tiger”, but were no better than chance for center-embedded
object relatives such as “the tiger that the lion is chasing is fat”. However, performances of Broca’s aphasics
was restored to the level of normal subjects for object relatives when world knowledge cues were available to
constrain the sentence interpretation as in “The apple that the boy is eating is red”. This latter result led the
authors to hypothesize a neuropsychological dissociation between two comprehension processes: a “heuristic”
system based primarily on world knowledge information and an “algorithmic” system relying mainly on
syntactic information. Sherman and Schweickert (1989) replicated the experiment while controlling for the
possible combinations of syntactic cues, world knowledge plausibility and, importantly, picture plausibility.
The conclusion of Caramazza and Zurif (1976) regarding the role world knowledge plays alongside syntax is
largely admitted as a non-controversial empirical fact confirmed by subsequent studies (Ansell and Flowers,
1982; Kudo, 1984; Saffran et al., 1998; Sherman and Schweickert, 1989).

Since this seminal work was published, it has been shown that the comprehension performances of
agrammatic aphasics appear quite heterogeneous. The very notion that agrammatism reflects the impairment
of an identifiable function of a syntactic system (as in the case of the Trace Deletion Hypothesis of Grodzinsky
(2000)) is strongly challenged by the diversity of comprehension performances. In their meta-analysis of 15
studies published between 1980 and 1993 that reported agrammatic aphasics’ comprehension performances
on sentence-picture matching tasks and included contrasts between active and passive constructions, Berndt
et al. (1996) found that the 64 unique data sets (for 42 patients) could be clustered into three groups of
approximately equal size, each reflecting a distinct comprehension pattern: (1) only active constructions
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are comprehended better than chance, (2) both active and passive constructions are comprehended better
than chance, (3) both structures are comprehended no better than chance. So far none of the theories
linking agrammatism to a specific deficit in syntax processing has been able to account for this variety in
performances. Rather than conclude that agrammatism does not constitute a useful neuropsychological
syndrome for the understanding of the neural and cognitive structure of the language system (Caramazza
et al., 2005) I suggest that this diverse set of data provides a good target for a new neurocomputational
approach. The main counterpoint of Broca’s aphasia and agrammatism is the case of Wernicke’s aphasics
who display mostly grammatical albeit nonsensical speech with very poor comprehension. As pointed out by
Grodzinsky et al. (1999) and by Zurif and Piniango (1999), it is only when agrammatism for comprehension
is associated to a Broca’s aphasia diagnostic that it can be associated to specific lesion patterns, and that
those lesions patterns should clearly differ from those predicted by a diagnosis of Wernicke’s aphasia. This
points to a necessity to try and account not only for agrammatism in comprehension but for the relations
that entertain production and reception deficits.

Neuroimaging

From the perspective of neuroimaging, far less is known about the the language production system than about
that of the language comprehension system. Neuroimaging studies, in great part due to the limitations of the
tools they employ, have focused on comprehension. Far less is known about the language production system
from this empirical perspective. Only a few key results about comprehension are presented here to set the
stage. The past ten years have seen many studies highlighting the fact that the language system coarsely
defined as the left perisylvian area was in fact composed of multiple anatomical and functional pathways
that run between pSTS and Broca’s areas. At least two different DTT studies demonstrated the existence of
two ventral pathways (Anwander et al., 2007; Saur et al., 2008). Those two DTI studies suggest the existence
of a single dorsal pathway but Catani et al. (2005) reported the existence of two different dorsal pathways
with one connecting pSTS and PTr directly while the other connects pSTS and PO through IPL. Glasser
and Rilling (2008) also reported two dorsal pathways connecting STG to PO and MTG to PTr respectively.
The specific functions of these ventral and dorsal pathways are unknown, but there is a tendency to assign
semantic processing to the ventral pathways and syntactic processing to the dorsal pathways (and possibly
verbal working memory to one of the dorsal pathways) (Friederici, 2011).

The role of at least one dorsal path in direct sensory-motor coding involved in word repetition is well
assessed and supported by both our and others’ theoretical account of language processing (Arbib, 2010;
Hickok and Poeppel, 2004; Saur et al., 2008). Recent work on primary progressive aphasia supported the
role of the ventral path in semantic processing but also pointed to a role of the dorsal path in syntactic
processing (Wilson et al., 2010a,b). A way to reconcile these two views on the role of dorsal path could be
to assign the role of sensory-motor mapping to the arcuate fasciculus (AF) connecting pSTG to BAG6 while
the syntactic processing would rely on the superior lateral fasciculus (SLF) connection of pSTG to BA44
possibly through IPL.

This is consistent with the view considering that AF could be evolutionary older supporting the initial
capacity to perform sensory-motor mappings necessary to bootstrap the parity required in symbolic com-
munication while the SLF through IPL and connecting Wernicke area and BA44 through IPL, which are all
brain regions that underwent considerable evolution between human and the non-human primates, supports
the uniquely human grammatical capacities. Empirical advances in understanding the general connectivity
pattern within the language system support the idea of that language rests on distributed computation in
a multi-stream architecture similar to that of the visual system (how/what dissociation). This division be-
tween syntactic/heuristic and semantic streams or routes is also widely reflected in EEG results and models
that have focused on the analysis of “semantic P600” and related work on semantic illusions (Bornkessel and
Schlesewsky, 2006; Brouwer et al., 2012; Kim and Osterhout, 2005; Kos et al., 2010; Kuperberg et al., 2007;
Nieuwland, M.S. and Berkum, J.J.A., 2005; van Herten et al., 2005).
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1.2 NeuroCognitive Modeling: A (very) Brief Overview

1.2.1 Computational Modeling of Neuro-Cognitive Systems: A Look from the
Language Processing Perspective

At the symbolic level, the U-Space model (U for Unification) of Vosse and Kempen (2000) uses an im-
plemented version of a lexicalist grammar based on a formalism similar to that of tree-adjoining grammars
(Joshi and Schabes, 1997). Based on tree-unification processes piloted by a process of dynamic competition
and cooperation, the model is able to simulate both core psycholinguistic empirical results in normal subjects
(effects of syntactic complexity, local and global syntactic ambiguity, lexical ambiguity) and agrammatics’
comprehension performance results (Caplan et al., 1985) that focus purely on their capacity to process syn-
tactic cues, but focusing on inter-patient variability rather than global averages. Moreover, the U-space
model has been used as a core computational piece of one of the landmark neurolinguistic conceptual model
of language comprehension, the MUC (Memory, Unification, Control) model (Hagoort, 2005, 2013). The
U-space model represents a touchstone for modeling efforts to simulate incremental comprehension and as-
sociated deficits. However, this model suffers from important limitations: it does not incorporate semantics
in any form, it only addresses comprehension, and it does not attempt to incorporate data regarding the
neural of functional structure of the language system.

The Lichtheim 2 model (Ueno et al., 2011) uses a structured network of neural layers, each representing
a brain region, that replicates in its architecture the dorsal/ventral route distinction assumed to exist in the
language system. By simulating lesions at various points of its architecture the model simulates aphasics
performances on tasks involving word production (naming), recognition, and repetition but cannot be scaled
up to account for more complex linguistic task involving sentence comprehension, production, or sentence-
picture matching and therefore cannot simulate the patterns of comprehension of agrammatic aphasics.

Turning to the visual world paradigm, the CIAnet model (Mayberry et al., 2006; Svantner et al., 2012)
offers an abstract neural network level implementation of some of the key features postulated by the CIA
conceptual model of situated language comprehension. The model rests on an Elman-type simple recurrent
network and offers an interesting illustration of the close temporal coordination that can be established
between attention and language processes. However, because of its use of localist abstract neural nets the
model remains extremely limited in scope. Kukona and Tabor (2011) present a model that combines a self-
organizing model of sentence processing SOPARSE (Tabor and Hutchins, 2004) and a dynamical system
based on attractor landscapes to represent the dynamics of visual attention. Their effort focuses on modeling
the impact of online grammatical processing on eye-movements.

Recently Brouwer et al. (2016) proposed a multi-level artificial recurrent network simulating the incremen-
tal interpretation of utterances. It showed how by, in part, allowing feed-back between discourse represention
building layers onto lexical information retrieval layers, the system could model a series of ERP results that
include both classic cases of N400 and P600 components, as well as P600 responses that have usually been
classified as “semantic P600” (see above). A critical aspect of the model is that it does not employ, in order
to deal the latter, a “multi-route” approach, a solution that has been suggested by most the key informal
models tacking this effect (for a critical review of those multi-route approach, see Brouwer et al., 2012).

Going in the direction of understanding how dynamical system properties can yield language like behavior,
Treves initiated a whole line of work studying how latching networks (an in particular Potts networks) can
shed a light on sequence learning and generation in the prefrontal cortex (Treves, 2005). In doing, so, it
continues the computational tradition of analyzing how to go beyond Hopefield pattern learning network
(Hopfield, 1982), to build systems that can (learn and control) dynamical transition between patterns.
Language generation taken as a sequence generating issue can be studies by such systems. Starting from
an articifical grammar designed for learnability studies (BLISS (Pirmoradian and Treves, 2011)), a whole
line of work as analyzed the capacity of such networks to learn to generate language. It is behind the scope
of this brief overview to go in the details drawn by those approaches that, sacrificing the desire to build
large-scale models, dive deeper into the theoretical questions regarding the relations between the biology of
the language system, the dynamics it can support, and language. The reader interested is encouraged to
review those studies (Russo et al., 2011; Russo and Treves, 2012, 2011; Pirmoradian et al., 2013; Pirmoradian
and Treves, 2012; Kulkarni et al., 2016).

Finally beim Graben has offered some deep analyses of the relations between dynamical systems and
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Figure 1.2: Computational modeling frameworks: Finding the right tools for the problem at hand. The
complexity of neural systems imposes, if not necessarily at least given the current state of knowledge,
that multiple computational methods be available to the researcher, each defining a particular quantitative
epistemological angle. The present figure provides an overview of those computational framework, organized
according to two perpendicular dimensions: Link to neural data, scale of the systems modeled. In addition,
the background Venn diagram contrasts the frameworks based on the type of representation they use: explicit
or distributed as well as on the type of mathematical foundations they chose as the basis of their operations:
dynamical systems or symbolic systems. The present work will be based on and extend Schema Theory.
Schema Theory (schema models) offer a hybrid modeling framework that combines symbolic and dynamic
processes. As shown in the figure, it lies both at the boundary between dynamical and symbolic system,
but also at the boundary between fully neurally anchored and algorithm oriented modeling approaches.
The diagram distinguishes between Schema Theory and Neural Schema Theory in order to make clear the
distinction between models that use the Schema Theoretic approach in its processing and architectural
requirements and those that incorporate neural data in their design and can be qualified as part of Neural
Schema Theory. The ideas behind Schema Theory will be discussed at length in sec. 1.4 and throughout the
thesis.
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language processing while offering methods to bridge between his theoretical insights and innovations to
ERP data (beim Graben et al., 2008). In particular his line of work offer deeper analyses of the theoretical
relationships that can be derived between symbolic and continuous dynamical systems. This vast topic, will
not be detailed here. The work presented in the following chapter will consider the hybrid approach to linking
symbolic operations and continuous dynamics. No attempt will be made to translate the entire model into a
continuous dynamical system using distributed representations. For the reader interested in diving into the
question of the general translation of symbolic onto distributed representation, see for example (Smolensky,
1990), or the line of work of beim Graben (Beim Graben et al., 2004, 2008; beim Graben et al., 2007).

Fig. 1.2 proposes a way to generally organize the types of computational modeling approaches. It insists
on the questions of (1) scale of system modeled (horizontal axis); (2) link to neural data (vertical axis);
(3) Style of computational approaches (symbolic v.s. dynamical systems); (4) Type of representation used
(explicit vs. distributed). Schema Theory will be the focus of this work.

The vertical axis indicates how closely modeling framework attempt to fit neural data. At the top are
framework that focus more on the study of algorithmic properties with often no attempts to link those to
neural data. The horizontal axis focuses on the scale of the system that the framework can adequately model
ranging from (from left to right) small scale neural circuits in which different neural types can be modeled
as well as the data regarding their connectivity (or even at an even smaller scale, single neuron models),
to Brain Anchored Neural Nets (BANN) that are often coarser in their individual model of small circuits
but attempt to develop neural network models whose architecture (but not only) is constraint by empirical
knowledge of brain connectivity, with finally Cognitive Architectures that usually focus on modeling complex
cognitive tasks, often only indirectly linking their results to brain data.

The horizontal axis is however not expressed as a progression in a single direction to reflect the method-
ological stance that complete system level understanding of a nervous system can only be achieved through
coordinate and mutually beneficial efforts to develop both computational models that aim to go from the
cognitive level toward the neural level, and of small scale computational neural models that aim at integrat-
ing their findings in order to move towards offering an understanding of what is for now considered to be the
realm of cognitive systems. This is methodological point that applies to the understanding of most complex
systems, it remains silent as to the ontological question and should not be taken to advocate for some form
of reductionist agenda.

Recent deep-learning models are a good example of Abstract Neural Net models that develop many new
learning paradigms but do not qualify as brain models. Symbolic models have been heavily used in the
development, for example, of computational linguistics, leading to key insights about the type of processing
that can or cannot support certain cognitive operations (e.g. work on learnability for language models).

Localist Network are somewhat in between as they associate both the type of architecture and dynamic
processes used in Abstract Neural Networks(ANN) while using explicit instead of distributed representations.
Such hybrid frameworks that straddle accross the symbolic and dynamic approaches, if they are often more
difficult to use at scale and often resist deep formal analyses (due to their heterogeneity and idiosyncrasies),
they play a crucial epistemological role as they help to bridge the gap between symbolic and dynamic
approaches, offering possibility to use the explicit human designed knowledge that form the backbone of
symbolic systems to understand the often difficult to interpret operations of ANNs. Conversely they can
help refine the explicit knowledge of symbolic system on the basis of the results achieved by ANNs.

Localist Network are however too limited. They are a specific approach rather than a general framework.
Schema Theory provides such general hybrid framework capable of tackling complex computational processes
and system. It offers an powerful computational and epistmological tool for building bridges going from the
top-down, helping moving towards system level models that display the capacity to be iteratively refined,
following the changes in the state of scientific knowledge, offering platforms to attempt the integration of
the computational advances put forward by smaller scale models.

1.2.2 Vision-for-Action: Integration of Bottom-Up and Top-Down Visual At-
tention Signal

Although the computational modeling of the visual system will not be the focus of this work, most of the
research presented in the following chapter are the results of a continued program of research that find parts
of its root in the cognitive-level computational neuroscience of visual attention as an active process of a
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Figure 1.3: Influence of task on scan-path as observed in Yarbus’ seminal work (Yarbus et al., 1967). In
his seminal experiment, Yarbus recorded the scan paths of subjects as they were visually parsing a scene
(here shown at the top-left) in order to fulfill different goals: (1) Free viewing case. No goal. (2) Estimate
the material circumstance of the family. (3) Give the age of the people. (4) Surmise what the family had
been doing before the arrival of the unexpected guest. (5) Remember the clothes worn by the people. (6)
Remember the positions of people and objects in the room. (7) Estimate how long the visitor had been away
from the family. Although here no quantitative analyses of the scan path is provided, the difference in scan
paths are clear enough (at least between certain goal conditions) for this initial experiment to initiate a vast
amount of research on the topic.

“vision-for-action” perceptual system. A model in particular, put forward by Navalpakkam and Itti (2005),
played a key role in bootstrapping this research program: It is not an overstatement to suggest that one
way to interpret the present work is as a continuation of this model. One of the narrative thread can be
described as:

Assuming that we have access to models such as the one developed by (Navalpakkam and Itti, 2005),
how can we use this as an advantage to move on and start building system-level cognitive models of situated
language production and comprehension and of their interactions with visuo-attentional process.

Visuo-Attentional System: Vision as an Active Sensori-Motor Process

Attention is key to allocate efficiently the energy of an organism towards the relevant information. In
particular, visual attention, by directly orienting the eye of the animal towards locations of the visual scene
that contain interesting information (overt attention) or simply by covertly allocating processing resources
to a sub-part of the input that impact the retina (covert attention), constantly guides how and what is
visually perceived. But what is interesting information? What justifies that a part of the environment
should be paid attention to? Broadly construed, the organism wants to direct its visual attention to regions
of the environment from which it can extract sensory information that is highly valuable for its survival and
increase its capacity to control its relation with the world. It does not come as a surprise therefore that our
human attentional system can be quite successfully functionally divided into two components. A bottom-up
component that processes the retinal input in parallel and automatically orients the attention towards parts
of the visual scene that can be defined by low-level characteristics such as quantity of movements, brightness,
flicker, color, etc.

Pyschophysics has long been interested defining such characteristics with debates persisting until today.
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Simply stated those are reflex processes that allow the organism to survive by ensuring that it remains alert
and can quickly react to environmental changes. The other component reflects the use of attention in the
process of achieving some more or less conscious goal. This top-down component is not automatic or reflex
but can be seen as more volitional (Baluch and Itti, 2011). Its role is to flexibly adapt the attentional
processes so that they best serve the purposes set by the task the animal is currently performing. The first
clear demonstration of the effect of those top-down processes on visual attentional guidance is often attributed
to Yarbus who compared the sequence of saccades (scan path) produced by individual when inspecting a
similar picture but while attempting to solve different tasks (determine the social class of the people, guessing
what is happening to them, etc.). As the task varies, the scan paths display qualitatively changes (Yarbus
et al., 1967) (see fig. 1.3). More recently Triesch and colleagues have used a simulated environment to show
how subject can miss important change in the environment (such the change in dimension of a cube they
are manipulating) if such changes, when they occur, are not relevant to proper unfolding of the task (Triesch
et al., 2003). As they put it, what you see is what you need. Visual attention has been the focus of many
computational endeavors (Borji and Itti, 2013; Filipe and Alexandre, 2013; Frintrop et al., 2010). However,
most of those focus on the modeling of bottom-up attention processes and do not tackle the issue of its
interaction with top-down control. Among the models that do tackle top-down attention, many are black
box systems that do not provide an explicit account of the way top-down attention uses cognitive capacities
to flexibly adapt the visual attention system to the task at hand (Ehinger et al., 2009).

Modeling the Impact of Perceptual Task on Attention: A Starting Point

More than 30 years ago, Treisman and Gelade (1980) proposed their Feature Integration Theory of attention
that stipulates what are the visual features that are used to orient bottom-up attention and, by analyzing
pop-out effects in visual search tasks, how are they are combined.

Less than a decade later Koch and Ullman (1987) proposed a conceptual feedforward model of how such
processes could be implemented using series of multi-scale spatio-chromatic filters processing the input image
in parallel and that are finally combined into a saliency map. This saliency map is a topographic map that
assigns a saliency value to each point of the visual scene, reflecting its conspicuity. Supplemented with a
winner-take-all architecture this saliency map can be used to select the most conspicuous point of a scene,
which becomes the focus of attention. Inhibition of return finalizes the picture by ensuring that the system
explores sequentially the most conspicuous points, simulating bottom-up triggered overt shift in attention.

Another ten years were necessary before the first complete implementation of this model was proposed
by Itti et al. (1998) that allowed the computation of saliency maps for natural scenes in a biologically
plausible model. This implementation or related ones are at the heart of most of the attentions models
(Borji and Itti, 2013), furnishing the core process supporting automatic bottom-up attention. Navalpakkam
and Itti (2005) were the firsts to try and understand how this saliency map model could be integrated
with an explicit reasoning module that could generate signals shaping saliency top-down to account for
task-dependent attentional requirements.

The model proposes an architecture that can flexibly account for task-specific attentional guidance in
real-world scenes. Importantly, flexibility here means that one of main goal consisted in designing a system
that would not be limited to a specific type of task (e.g. single target search), but rather should accommodate
the different types of requests. Keyword lists are therefore used to pass on the task specification to the system
(e.g. “what is the man catching?”can be passed on by specifying man as a subject and catch as the action).
The model incorporates some key elements that allow it to handle such tasks. It incorporates an explicit
symbolic world-knowledge long-term memory. It is endowed with a symbolic working memory that can use
this knowledge to reason about the world. Parallel to these symbolic processes, the model incorporates a
visual long-term memory that stores object representations. Those can be learned and used in a visual
working memory that also transiently stores the visual features of the relevant elements of the scene that
have been explored (in the spirit of (Kahneman et al., 1992)). Both symbolic and visual working memories
play a central role in creating a non-volatile higher-level visual processing layer whose states can control
the volatile processes in the lower-level visual layer (Rensink, 2000). Indeed, the core ideas of the model
is to use the visual and symbolic working memory to generate top-down signal orienting at each time the
attentional system towards relevant objects. First it selectively tunes the bottom-up attentional processes
by modifying the gains applied to the low-level feature-maps before they are linearly combined to generate
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Figure 1.4: Overview of the model proposed by Navalpakkam and Itti (2005). Each panel represent the
same model at different phases of processing. In each panel, the active components are highlighted. Phase
1 (top left): Eyes closed, Phase 2 (top right): Computing, Phase 3 (bottom left): Attending, Phase 4
(bottom right): Updating. As the authors wrote, “Following Rensink (2000) terminology, volatile processing
stages refer to those which are under constant flux and regenerate as the input changes.” Phase 1: The
system receives the task-related goals it will need to achieve (here find a given object). Those set up the
states of both the Visual WM that holds active perceptual knowledge extracted from the Visual LTM,
and similarly for the associated Symbolic WM that retrieves and organizes knowledge extracted from the
Symbolic WM. Both the Visual and Symbolic WM are in a state in which knowledge relevant to the task at
hand has already been retrieved. Prior to the visual input being received, high-level perceptual and symbolic
knowledge is already engaged in defining task-based top-down guidance for the visual system by biasing the
low-level visual processes. Phase 2: the scene input is received. Low-level massively parallel visual processes
computes bottom-up saliency information based on low level features. In parallel gist information regarding
the nature of the scene is quickly computed. The bottom-up computed saliency map is merged with a task-
relevance map generated by Symbolic driven top-down expectations, to generate an attention guidance map
that integrate both bottom-up and top-down information. Phase 3: The state of the attention guidance map
is used to orient the attentional focus. The attended part of the scene is processed to extract its perceptual
content (proto-objects and recognized object). This perceptual information is used to update the state of
the Symbolic WM. Phase 4: All the states are updated again, which will lead to a new task-relevance map
and to a new attentional shift. The process is repeated until the goal is achieved
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the saliency map (in the spirit of the Guided Search model (Wolfe, 1994)). However one of the most unique
features of this model is the use of a task-relevance map that can be seen as the top-down extension of the
bottom-up saliency map. Based on the state of the working memories, the task-relevance map contains the
topographic information regarding where relevant objects are predicted to be located. This task-relevance
map is combined with the biased saliency map to generate an attention guidance map from which the focus
of attention is selected to orient eye movements (see fig. 1.4 for an overview of the model).

The first key characteristics of this model is its use of the symbolic working memory to simulate reasoning
based on world-knowledge and orient the attention towards entities that are relevant for the task. The world
knowledge in the model is represented using hand-crafted ontology containing information about objects,
actions and their relations (is-a, part-of, similar, etc.).

The symbolic working memory maintains a task graph that contains task-relevant object symbolic rep-
resentation and their relations. This graph is updated using the ontology and each entity in the graph is
associated with a relevance value. The best way to illustrate the functioning of this system is to look at how
it processes the task information to generate the initial working memory state. If the task specifies MAN as
a SUBJECT and CATCH as an ACTION, this is tantamount to the system to answer the question “what is
the man catching?” The initial graph in working memory will contain a node for CATCH, a node for MAN.
It will then use the ontology to find paths that connects the two (e.g. a path stipulating that the hand is
part of a man and that it is used to catch objects) and such paths will expand the graph. By computing the
relevance value of the nodes in the graph, the system might decide that HAND is the most relevant objet.
A top-down signal will therefore bias the saliency maps to boost hand saliency. Similarly, when an object is
recognized by the perceptual system, the symbolic working memory will decide whether or not it is relevant
by either checking whether it is already part of the task graph or by attempting to add it. This structure
offers a way to model the dynamic and incremental recruitment of world knowledge guiding visual attention
during a visual task.

A second important characteristic of the model lies in its capacity to learn object representations that
are defined as feature-vector based of the same format than those used in the bottom-up Itti-Koch saliency
system. Relying low-level features allows the system to use the same features during object recognition and
during top-down biasing of feature-maps. As already mentioned, the biasing is done by changing the weights
applied to the different feature-maps before their linear combination into a saliency map. For a given object,
each feature-map is assigned a weight that reflects the variance and mean values of this feature in the object
representation (the higher mean and the lower variance, the higher the weight). Such top-down biasing
scheme is proved to outperform and be easier to generalize than other ways to implement target detection
(and in particular the author compare their model with (Rao et al., 2002) showing the shortcoming of this
approach).

Finally the authors show how the task-relevance map can be learned. Trained on visual input taken from
the perspective of a driver, the system learns to detect the road as the task-relevant area to find cars.

This system was the first one to propose a way to integrate the successful and biologically plausible
Itti-Koch model of bottom-up attention with an explicit reasoning system that can generate top-down biases
flexibly adapted to various task demands. It introduces many important concepts that outline the type of
computational elements necessary to perform such successful integration. Among the key ones are: non-
volatile processes combining symbolic and perceptual working memories, gain modulation of low-level feature
maps, and a learnable task-relevance map. Some elements are missing and are clearly indicated as requiring
further investigation. The ontology is hand-crafted and cannot be learned. Gist is not used to quickly set-up
task-relevance expectations. Objects visual representations do include the possibility to encode parts that
could offer spatial guidance towards relevant area of the scene (if you found the hand of the man, you can
quickly find his arm).

To this date, it remains a rather unique model since very few others can claim to have tried to explicitly
implemented such flexible system of top-down attention control.
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1.3 Grammatical Processes Beyond Syntax: Computational Con-
struction Grammar

In the past ten years, a series of modeling works have used cognitive linguistics as a theoretical basis to
generate computational implementation of language processing. While these by no means constitute a unified
effort and span from embodied robotics to neuroanatomically specified neural models, they all share the
common general assumptions that are put forward by cognitive linguistics, namely that language needs to be
understood in terms of its use by a society of agents with situated bodies, and that language processing should
not be studied in isolation from what is known of sensory-motor systems and of the type of representations
they support. In addition, these share the view that syntactic, semantic, and pragmatic aspects of language
cannot be properly analyzed as separate components but rather should be thought transversally as tied
together into constructions. Constructions generalize the notion of form- meaning binding lexical item to
encompass idioms (e.g. “kick the bucket”), partially filled expression (e.g. “the Xer the Yer” as in “the more
the merrier”), or even formally abstract argument structures (e.g. the transitive construction), all carrying
their own idiosyncratic mapping between form and meaning. Construction grammars therefore provide a
fundamentally new way to look at language knowledge very much in the form a generalized lexical knowledge.
I will here review four of the main computationally implemented models of construction grammar insisting
on the novel perspective on the human language faculty they offer and on their relation to embodied theories
of meaning. In particular I will insist on how the various framework incorporates roles for perceptuo-motor
schemas in the language comprehension and production processes.

1.3.1 Cognitive Linguistics

None of the the models that were described above is able to tackle the core issue of semantics and how
multiple levels of meaningful representations are articulated linking perceptuo-motor motor representations
with linguistic semantics and grammatical representations. Cognitive linguistics has emerged as a solid
alternative to the generativist linguistic perspective (Croft and Cruse, 2004). Cognitive linguistics focuses
on language as a communicative tool that allows for meaningful actions to be performed between members
of a linguistic community. The primacy of meaning goes hand in hand with a constant effort to link
semantic/pragmatic operations to non-linguistic human cognitive capacities, weaving the language within a
more general web of perceptuo-motor cognitive functions considered indispensable to a proper understanding
of how language is used, has evolved, and is learned.

The various grammatical formalisms emanating from cognitive linguistic theories tend to fall under
the rubric of Construction Grammars (CxGs) (Boas and Sag, 2012; Croft, 2001; Goldberg, 1995; Kay and
Fillmore, 1999). Briefly stated CxG cuts across the generativist segregation of morphology, syntax, semantics,
pragmatics and proposes to describe all linguistic knowledge as trans-componential, taking the form of
constructions defined as form-meaning mappings.

1.3.2 Embodied Construction Grammar

The Neural Theory of Language (Feldman and Narayanan, 2004), and its core computational elements that
are the X-Schemas and the Embodied Construction Grammar (ECG), offer the computational counterpart
to the strong embodiment claim of Gallese t and Lakoff (2005). This framework seeks to explain language
comprehension in terms of sensory-motor simulations on which linguistic meaning can be directly anchored
in the case of concrete action sentences. In the case of abstract sentences, the idea is that the pervasive use
of metaphorical mappings from an abstract target domain (e.g. International economics) onto an embodied
source domain (as in “The liberalization plan stumbled”) makes such simulations possible. The concept of X-
schemas (Narayanan, 1999) was developed as a way to computationally represent the hierarchy of pre-motor
structures that package motor control programs into a limited set of parameters and can be used either to
direct action in the world or to carry out offline simulations. Narayanan was successful in showing how a
system that contains (1) abstract world knowledge about a target domain (knowledge of international eco-
nomics coded as a Belief Network), (2) sensory-motor knowledge represented as a network of X-schemas, and
(3) metaphorical mappings between the two, linking belief values to X-Schemas parameters, could generate
correct inferences, when presented with a newspaper headline such as “Liberalization plan stumbling”: that
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Table 1.1: (Left) General view of a construction (Croft, 2001); (Right) Exploded view of a construction into
its components (Croft, 2005). (Left) A construction is a symbol(in the sense of Saussure) in that it defines
a symbolic correspondence between a form and a conventional meaning. Construction grammars blur the
distinction between grammatical rules and lexicon (the latter being canonically containing the elements that
define form-meaning symbolic mapping). It also blurs the componential distinction between phonological,
morphological, and syntactic properties that call participate in the definition of a construction’s form, as well
as the distinction between semantic, pragmatic, and discourse properties, all of which can jointly participate
in the definition of a construction’s meaning. (Right) Form and meaning poles of a constructions should
not be thought of as monolithic entities but as complex structure themselves. The form and meaning pole
are structured by internal relations (syntactic and semantic relations respectively). The symbolic mappings
between those two structures is then itself composed of multiple symbolic relations. There is no agreement
as to the exact definition of a construction and the reader should consider Croft’s version only insofar as it
illustrates quite well the main tenets of construction grammar that are shared among theories.

there is an ongoing economic plan, that it is facing difficulties, and that it is likely to fail. Such inferences
are possible because the system can use X-Schemas to simulate the effect of stumbling on a WALK schema
and map the resulting state (falling state unless a lot of force is applied) to the concept of difficulty and
failure in the target domain of economic policy. Expanding on this core semantic processing computational
model, later work introduced ECG as a way to use grammatical constructions to map more generally lin-
guistic content onto conceptual schemas that can set the parameters of the X-Schemas which finally carry
the sensory-motor simulations necessary to generate inferences (Bergen and Chang, 2005; Feldman, 2010).

Constructions in ECG span a large range of form-meaning pairs going from lexical to argument structure
constructions, and ECG only covers comprehension. No work so far has addressed production. A precise
presentation of the detailed formalism used to represent the constructions would be too tedious so I will
insist on some of the key properties that are unique to ECG. Both the meaning and form pole constructions
contain sets of features (respectively semantic and syntactic/morphological features) that can be used in
a rather classic unification procedure similar to that used in unification-based grammars based attribute
values matrices (e.g Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994)). Unifying
constructions in order to build a parse therefore largely inherits from constraint programming. This reliance
on unification has the interesting processing characteristic that there is no difference in ECG between carrying
an attempt to test the match between constructions and their actual successful unification (and we will see
that in this ECG differs from Fluid Construction Grammar (FCG), sec 1.3.3).

Turning to the definition of the semantic pole of constructions, the type of semantic features postulated is
strongly influenced by frame-based semantics (Fillmore, 1976) and by the formalism of image schemas intro-
duced by Langacker (Langacker, 1986). The unification of construction results in a semantic interpretation
of the output called the SemSpec (and not in a classic parse tree) (Shieber, 1986).

A unique feature of ECG consists in that constructions are all defined on an implemented inheritance
lattice. Grammatical knowledge is structured in an ontology that adapts the type of representations that
have been introduced in cognitive linguistics. This allows ECG to use the lattice during the parsing process
to control which constructions are active, avoiding combinatorial explosion. Since construction grammars
do not constraint the number of grammatical categories, grammatical features, etc., they did away with the
formal parsimony that characterized generative grammars. As a consequence, they are much more flexible
and adapts easily to the many “irregularities” of language use. But the price to pay for this flexibility is in
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processing and control costs. Given a linguistic input to parse it becomes crucial to find a way to control how
the search-space is built. The use of a structured grammatical knowledge is one of the ways to do so in ECG
(in addition to ensuring the consistency of the system). Both because finding the optimal parse through
an exhaustive search would still be too computationally expensive and because ECG aims at modeling the
human use of language which is known to consist more in a satisficing problem (Simon, 1972) than in an
optimal solution search, the best-fit analysis heuristic has been developed as a basis to build and explore
the search space (Feldman, 2010). This heuristic uses a Bayesian-type of scheme to assign probability to
various parses that reflect their plausibility, and it does so in a way that is incremental and robust, two other
core aspects of human parsing. The use of the inheritance lattice makes ECG’s semantic more symbolic
than procedural. However, the meaning pole of constructions is designed to parameterize the frame-based
semantic content so that it could serve as an input to X-schemas. Therefore the SemSpec can be seen as a
procedure to translate the semantic content of the input utterance into a set of parameters that will then
control the simulations run on X-schemas. The result of this simulation in turn supplies embodied inferences
that enrich the SemSpec.

The efficient integration of information sources, and in particular of contextual and linguistic cues, with a
focus on co-reference resolution, has been formalized and analyzed (Bryant, 2008) who put forward the notion
of “Best-fit analysis”, here again anchoring ECG strongly within the language as language-use scientific
paradigm '. In parallel, Chang (2008) tackled the question of learnability and showed how ECG can model
construction acquisition through language-use.

As a computational implementation of the strong embodiment claims of Gallese and Lakoff this work
clearly illustrates how motor schemas can be harnessed to support the inferences that have to necessarily
accompany language comprehension including in abstract domains. However, it also shows that sensory-
motor simulations are useful only in that they can interact with the abstract knowledge of the source domain.
Unfortunately in this work, the question of the nature of brain structures that support the metaphorical
mappings are left unspecified.

1.3.3 Fluid Construction Grammar

Fluid Construction Grammar (FCG) emerged as a computational construction grammar framework tailored
towards a use in embodied robotics. However it is also able to function as a standalone language model
that could be used in any computational linguistic task (Chang et al., 2012; Steels and De Beule, 2006;
Steels, 2011; Van Trijp et al., 2012). FCG aims at offering a toolbox for computational implementation
of (any) construction grammar. Its achievement is therefore a computationally efficient and operational
linguistic formalism to define and use constructions for both production and comprehension, formalism that
nevertheless remains versatile enough that it does not over-constrain the characterization of the constructions
allowing the community of researchers to explore many different options. Any discussion of FCG needs to
clearly differentiate between the general formalism that leaves open many key choices and some of its specific
uses.

Being a construction grammar framework, grammar is necessarily specified as a set of constructions in
FCG. So any user defining her own grammar in FCG will have to specify for each construction the content
of the syntactic and of the semantic pole. But for example, FCG does not dictates what general model of
semantics should be used (first order logic, embodied robots sensory-motor parameters, lambda calculus,
etc). This cannot be overlooked when discussing construction grammar in relation to neurolinguistics since
it emphasizes right away that FCG will not in itself commit to any specific relation to sensory or motor
schemas. One could use FCG within a predicate logic semantic system completely isolated from sensory-
motor concerns or could use it in the framework of embodied robotics with semantics being directly defined
in terms of sensory-motor parameters (or any position in between). For this reason I will first present briefly
some core properties of FCG before turning to the question of its relation to sensory-motor schemas. Lin-
guistic information in FCG is represented by two main structures: the transient structure and constructions.
The transient structure defines all the information that is needed to either parse or produce a sentence.
Initially this information is contained in an information buffer. In the case of the production the buffer

1 Altough the Best-fit analysis is bayesian in its implementation, I would content that the general principles it outlines go
beyond this implementational choice and can guide modeling work using other theoretical approaches to tackle heuristic based
information integration

22



contain a semantic representation, while in the comprehension case it consists of all the surface structure
of the sentence. I will consider only comprehension from now on but the production process is designed as
symmetrical in FCG. Constructions in FCG, as in Embodied Construction Grammar (ECG) (see sec 1.3.2),
define semantic and syntactic features that function in a way similar to features in unification-based gram-
mars. In addition a construction can be seen as functioning as a kind of daemon. When the comprehension
process starts, if part of the surface structure in the buffer matches the syntactic pole of a construction, this
construction gets applied. Its syntactic pole merges with the current syntactic pole of the transient structure
while its semantic pole merges with the current semantic pole of the transient structure (both defined as trees
and both initially empty). As the syntactic pole of the transient structures grows, it becomes possible for
constructions to get applied not onto the buffered sentence surface structure but directly onto the syntactic
pole of the transient structure. So usually lexical constructions are first applied to single word-forms before
more and more complex constructions start applying on top of the lexical constructions. This process shows
some interesting computational features. First, lexicon is seen as primary in FCG, therefore even in absence
of any complex constructions, a meaning can still be expressed as a set of words or some semantic content
can be recovered during comprehension from the interpretation of content words. Second, FCG distinguishes
between the matching and the merging process during the application of construction. There is a specific
mechanism (match) that checks whether a construction could be applied onto the current transient struc-
ture (answering the question, does the form of this construction match the syntactic pole of the transient
structure?) while another mechanism (merge) is in charge of modifying the structure if a match is found
(i.e. if there is a match, merge both the syntactic and semantic pole of the construction with the transient
structure). This implies that only constructions whose form match can modify the transient structure, and
that if merge fails it can only be because of a semantic mismatch. Third, FCG uses a type of cooperative
computation paradigm as a heuristic to explore the search space. A best-first search method is implemented
with scores being attributed to nodes in the search space (corresponding to possible chains of construction
applications). The score of a node is based on the scores of the constructions used so far in the parsing chain.
The score of constructions is itself defined on the basis of their success in previous interactions and on the
quality of their matching with the transient structure. Such heuristic is very interesting since it allows the
process to be modified by usage. Finally, recent work by Wellens has started to explore the possibility to
generate construction networks from use, organizing the grammatical knowledge, and allowing a construction
that has been successfully applied to prime others that are known from past processing to be potentially
relevant (Wellens and Steels, 2011).

After this very condensed presentation of FCG, I will turn to the question of its relation to models of
semantics by summarizing the embodied robotics framework that predated the birth of FCG, triggered its
development, and continued to be one of the main aspect of the research carried using this language formal-
ism. Embodied robotics has been used to address the question of how (artificial) agents that perceive and
act in the physical world can establish and use a language to communicate. In particular, the work initiated
by Luc Steels has focused on using evolutionary language games repeatedly played within a community of
embodied robotic agents to study the possible emergence of a shared lexicon and later the possible emergence
of a shared grammar. The initial Talking Heads experiment consisted in a naming game (Steels, 1999). At
each turn, two robots, selected from a population of agents, are placed in front of a visual scene (a scene
composed of colored geometrical figures). One (the speaker) picks a figure in the scene (a topic) and orients
its sensor (camera) roughly towards it. Then it tries to communicate to the other robot (the hearer) what it
selected by producing words from its lexicon. The other robot is endowed with the capacity to use the sensor
orientation of the speaker to orient its attention towards the generally relevant area of the visual scene.
Upon hearing the words produced by the speaker, the hearer has to guess what the figure is and “points”
towards it (by moving orienting its camera). If the hearer is wrong, the speaker then points to the correct
figure. Given the proper learning rules, it was shown that, starting from random idiosyncratic lexicons for
each agent, a shared lexicon will self-organize and stabilize in the population. Parity of meaning is therefore
achieved as an emergent property of embodied language use that results in the alignment of the cognitive
content (structural coupling). The embodied nature of the agent plays a central role in these results: parity
emerges because the players share similar bodies (similar sensors and way to use those sensors), share a
common physical environment, have already available sensory-motor schemas to orient their attention based
on another agent gaze (camera orientation), share similar ways to encode the meaning of words as sensory
parameters. In a next step vertical transmission across generations of agents was added and the linguistic
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representations were expanded from lexical items to constructions grounded in sensory-motor representation
using FCG. Beuls and Steels (2013), using similar types of language games, were able to show the emergence,
evolution, and cultural transmission of grammatical agreement in a population of embodied agents, and this
only through the repeated linguistic interactions between agents. This provides a preliminary computational
insight into how the process of grammaticalization can result from a historical process of self-organized
cultural invention improving the efficiency of language related cognitive operations.

1.3.4 Dynamic Construction Grammar

While ECG (see 1.3.2) and FCG (see 1.3.3) make little or no direct contact with neural data focusing on
mirror neuron data in the non-human primate (ECG), or on strictly robotic/simulated situated language
games (FCG), Dominey initiated a line of work that seeks to understand how neurally anchored neural net
models can simulate the learning and use of constructions’ form-meaning mappings (Dominey et al., 2006,
2009).

I will refer to this work as Dynamic Construction Grammar (DCG). One of the core element of this
modeling work lies in the ties it builds between temporal sequence learning and language processing. The
fundamental assumption is that sequential cognition, especially the capacity to learn certain abstract tem-
poral sequences (e.g recognize “ABCBAC” motives) as well as to learn abstract sequence transformation
(e.g map an “ABC” motive onto “CBA”), serves as a key scaffolding element of the human language faculty
(Dominey et al., 2003). This perspective offers the interesting possibility to anchor modeling of the lan-
guage system (focusing mostly on classic left hemisphere perisylvian regions) into previous modeling work
done on sequential cognition in the macaque that was focusing on the occulo-motor saccade system. This
work not only developed some key theoretical results on how to support sequential behavior using recurrent
nets but also outlined clearly the central role that subcortical structure and in particular cortico-striatal
connections play in sequence processing (Dominey et al., 1995; Dominey and Arbib, 1992). In order to link
construction processing to sequential cognition, Dominey et al. (2006) introduce the idea that constructions
can be recognized using the sequence of function words they contain. For example, the passive construction
used in “The ball is kicked by the boy” could be characterized by the sequence “X Y by Z”, while the
object-cleft construction used in “It is the ball that the boy kicked” could be associated with the sequence
“It is X that Y Z”. Dominey shows how a neural net could learn to detect sequences of function words
associated with different constructions and used this to map content words onto their proper thematic role
(X onto Patient, Y onto the Action, and Z onto Agent in the passive construction). Hinaut and Dominey
(2013) used reservoir computing as a way to boost the model’s performances. The model has since also
been turned into a model of language production (Hinaut et al., 2015). But training a production system
is a much more difficult problem than training a comprehension system. Despite the apparent theoretical
symmetry that the reservoir type of processing appear to display between production and comprehension,
the large difference in algorithmic complexity between the two suggests that different processes could be at
work during comprehension and production. Even though the linguistic representations used for production
and comprehension can, perhaps, be represented formally by a single construction, the constructions used
for production and comprehension at the neural level are distinct.

Although this work does not address the issue of how constructions can be used to generate more com-
plex construction assemblage or how to go beyond the thematic roles to make contact with sensory-motor
systems or conceptual knowledge (but see (Dominey and Boucher, 2005) for a embodied robotics perspec-
tive of situated learning of construction meaning based on visual sensory information), it provides a unique
perspective on how construction processing can be computationally implemented using a neural architec-
ture that is anchored on that of the language system (and including subcortical systems often forgotten
in the neurolinguistic literature). In addition, the model builds links between language processing and ac-
tive vision processes supported by the saccadic occulo-motor system, and in doing so, it makes an important
move towards understanding better understanding how brain systems supporting various aspects of temporal
sequential cognition could have been lifted to support linguistic functions.

The successes and drawbacks outlined by computational works reviewed above highlight the fact the main
computational challenge will consist in building a model that both handles the attention-language interactions
highlighted by the results derived from the VWP and accounts for the distributed and nature of the neural
architecture that composes the language system while retaining the capacity to simulate symbolically complex
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operations. If sub-symbolic neural network models offer an efficient way to integrate neural architecture
within a model, they are very limited in the type of operations they can handle. On the other hand,
symbolic models and in particular CxG based models display a great capacity to simulate complex linguistic
operations and their relations to perceptuo-motor systems. Schema theory (Arbib et al., 1987; Arbib, 1989)
offers a computational methodology fitted to build neuro-computational models that incorporate symbolic
and dynamic operating principles. Template Construction Grammar (Lee, 2012) has been developed as a
first step towards a schema-level model of language production of visual-scene description.

1.4 Schema Theory: System Level Cognitive Modeling Frame-
work and Dynamic Cooperative Computation.

Schema Theory was introduced as a top-down counterpart to the bottom-up neural network modeling ap-
proach. Neural network models tend to adopt a bottom-up approach in which only small parts of a system
is simulated in details leaving aside the question of their integration. Schema Theory offers a framework to
build system-level models integrating the processes require to simulate the organization of goal-oriented be-
haviors. It focuses on the adaptive dynamic interactions between sub-systems, respecting the computational
style of the brain (Arbib, 1989).

Schema Theory has already been successfully applied to the modeling of visual scene recognition, motor
control, path finding, prey-catching behavior, etc. As more territories are explored, the Schema Theory
formalism is refined and revised. This has led to a series of formalizations, each focusing on a certain
aspect of the theory (mathematical analysis (Steenstrup et al., 1983), robot design (Lyons and Arbib, 1989),
(Oztop and Arbib, 2002), locomotion (Corbacho and Arbib, 1995; Corbacho et al., 2005a,b), and system
level cognitive architectures (Draper et al., 1988)). The purpose of the present research consists in building
on these previous works and extend Schema Theory to language.

1.4.1 Schema Theory: A Brain Theory Framework to Model Organisms’ be-
haviors within Action-Perception Cycles.

Tackling the vision-language interaction at a system level that encompasses multiple sub-systems as well
as multiple sensori-motor loops integrated within a cognitive architecture requires to choose a modeling
approach that fits the challenge by providing the right level of abstraction. In this work we propose to follow
the Schema Theory approach to design brain models focusing on a top-down modeling methodology which
consists in focusing on building a high-level architecture that encompasses the whole system, analyzing
the various functions it needs to performs, the challenges of their integration in a brain like distributed
concurrent computational architecture, with the aim to complement the bottom-up approaches which offer
more detailed analyses, possibly at the neuronal level, but limited to very specific sub-systems.

Schema Theory, following in the footstep of early work on schema based cognitive modeling of memory
processes (Bartlett, 1932), and on cognitive development (Piaget, 1965), was put forward by Arbib (Arbib,
1989; Arbib et al., 1987; Arbib, 1981) as a brain theory method to offer a principled approach to build
symbolic processing system that respect the style of computation of the neural systems.

Schema Theory (ST) was designed to offer a way to start offering models of cognitive system for which we
do not yet possess enough neural data to develop full-fledged neural models, while leaving open the possibility
to re-factor and refine the schema theoretic models by replacing sub-systems by neural implemented models
as knowledge regarding the neural underpinnings of certain cognitive functions become better known.

Schema Theory, as a computational framework rests on a few basic tenets. First of all, schemas are
used to define basic cognitive computational units. Schemas can be either learned or innate and encapsulate
basic processing units. The cognitive system can be seen as a structure set of schemas that dynamically
interact to flexibly organize the course of an organism’s behavior given a task and an environment. Schemas
can be of different types: perceptual schemas, motor schemas, cognitive schemas. At each moment, the
course of action chosen by an organism depends on how the sensory inputs are processed on the basis of
the existing perceptual schemas, the state of the cognitive schemas, as well as the way motor schemas can
shape the interactions with the environment. A strong emphasis is placed on always studying a cognitive,
sensory, or motor, problem through its integration within one or multiple action-perception cycles coupling
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the organism with its environment. A first core principle of ST, derived from the known architecture of the
nervous systems, is that the ST architectures always aim at simulating system-of-systems (SoS) in which each
sub-system can itself be composed of multiple schemas. In addition, the schema systems are implemented
as distributed computational systems, with each schema performing its function asynchroneously.

ST models share therefore one of the main assumptions behind neural network computational model:
computation occurs in continuous time and in a distributed fashion. Another main characteristics of ST
based models it their hybrid nature: although the functional schemas can be implemented symbolically, the
interactions between schemas and therefore the overall computation supported by the schema architecture
is governed by cooperative-computation (C2) dynamical system principles. Just as it is the case for neural
systems, ST systems allow multiple schema functions to enter either in cooperation or in competition, forming
cooperation or competition links. The result of those competitions and cooperations is the constant self-
organization and emergence of flexible control structures organizing the system’s behavior. The competition
and cooperation between schemas impact the activation value given to each schema, activation that at each
time reflects the relevance of the process it carries to the task at hand.

The C2 process leads to the creation of cooperating schema assemblage that serve as flexible control
structure. This allows the system to consists to use schemas that are not necessarily tailored to solve a
specific task but that can restructure their interactions on the basis of a task and resources at hand to
control the behavior (Arbib and Caplan, 1979). It favors models that can engage in more direct interactions
and integration with other modeling work that can use some shared set of schemas but for a different purpose.
This sort of approach is already quite popular in robotics work where the community cares about developing
autonomous agents that can flexibly reuse functions to best interact with their environment to solve multiple
disjoint tasks. Robot Schema (RS) was put forward as a robotic oriented formalization of Schema Theory
(Lyons and Arbib, 1989) (R.O.S., although not brain oriented, offer another example of distributed functional
processing with reusable functional modules across tasks (Quigley et al., 2009)).

Schema theory provides a level of computational modeling that aims at facilitating later transfer to neural
level implementation. It is both symbolic (whether or not a schema has been instantiated) and sub-symbolic
(the activity level and parameter values of current schema instances). It allows for the distinction between a
feature implicit in the operation of a schema and the activation of a schema that makes that feature explicit.
For example, the color of an apple may enter into recognizing an object’s shape en route to identifying it
as an apple whether or not it enters explicit awareness that the apple is red or green. An initial schema-
based model becomes part of neural schema theory if it addresses data from lesion studies, brain imaging, or
single-cell recording to help us understand how this behavior is mediated by the inner workings of the brain.

ST also insists on the hierarchical aspect of schema processing in the various distributed sub-systems.
To take the case of perception, bottom-up and top-down processings are integrated with low-level schemas
offering bottom-up hypotheses regarding the nature of the sensory inputs directly anchored in the sensory
modal features extracted by the sensory organs, those bottom-up processes are fed into and influenced higher-
level perceptual schemas that offer top-down hypotheses and can in turn bias the lower level interpretation
of the inputs.

Schema Theory has already been successfully applied in early models of speech perception. The HEARSAY-
IT model offered one of the first ST like architecture based in which the idea of blackboards for incremental
and concurrent hypothesis sharing was introduced (Erman et al., 1980).

The HEARSAY-II speech understanding system also adopted the perspective of cooperative computation
even though implemented on a serial computer. HEARSAY uses a dynamic global data structure called
the blackboard, partitioned into surface-phonemic, lexical and phrasal levels. Processes called knowledge
sources act upon hypotheses at one level to generate hypotheses at another. Arbib and Caplan (Arbib and
Caplan, 1979) discussed how the knowledge sources of HEARSAY, which were scheduled serially, might
be replaced by schemas distributed across the brain to capture the spirit of distributed localization of
Luria (Luria, 1974). Today, advances in the understanding of distributed computation and the flood of
neurolinguistic neuroimaging and behavioral data call for a new push at neurolinguistic modeling informed
by the understanding of cooperative computation.

ST architecture modeling grasping motor control have been influential in organizing the knowledge around
how grasping abilities are tied to action-oriented perception and to dynamic self-organization of various levels
of motor-control .

Directly related to the current work are two ST models that have tackled respectively language processing
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Figure 1.5: Schema Theory and Cooperative Computation (C2) (LEFT) Schema Theory integrates bottom-
up perceptually driven with top-down knowledge driven processes within the hybrid symbolic/dynamic
framework of Cooperative Computation between schema instances. At a perceptual-feature level (bottom)
features drive the recognition of shapes that can be (and indeed usually are!) inherently ambiguous when
interpreted at a perceptual semantic level (DUCK/RABBIT) (middle). Perceptual knowledge is stored as
schemas in a Schema Network that form a Long Term Memory (LTM). Each schema represent a process
that can be instantiated when it becomes relevant to solving the task at hand (in the present example,
recognizing the identity of a shape). As brain theory teaches us that the nervous system is best described
(in most instances) as carrying concurrent operations, schemas corresponding to competing processing hy-
potheses can be instantiated simultaneously, resulting in both cooperation and competition relations be-
tween schema instances. Here the perceptual instances that support the DUCK interpretations cover the
same lower-level perceptual features as those supporting the RABBIT interpretation (although bundling
them differently). Both set of cooperating perceptual instances, each forming an assemblage, are in turn
in competition. (RIGHT) Informal summary of the cooperative computation situation: perceptual schema
instances supporting EARS vs. BILL perceptual interpretation of lower-level features are in competition
(red links, competition). They in turn cooperate/support respectively the perceptual schema instances that
stand for the RABBIT vs. DUCK perceptual interpretation (green links, cooperation), instances that are in
competition. The resulting dynamic system of cooperation and competition is, in abstract, symmetric. A
final interpretation could then be reached due to noise leading eventually to the breaking of symmetry, or
be bistable. But if most of the sense data are inherently ambiguous, expectations, previous general knowl-
edge and context usually lead to an almost always unambigous interpretation. Adding perceptual features
corresonding to a CARROT interpetation, in a position that can be interpreted (based on our complex
knowledge of the world), as being near the mouth of the ambigous figure if it is itself interpreted as RAB-
BIT (LEFT), breaks the symmetry (RIGHT). As a general principle, each schema instance can serve as a
disambiguating context for the instances it cooperates with. This disambiguation by context is by no means
guaranteed in absolute but is almost always the case in practice.
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Figure 1.6: VISIONS: From visual input to scene interpretation. (Left) Image input. Segmentation: Low-
level vision uses competition and cooperation at the level of local image features (edges, colors, etc) to grow
edges and regions. This bottom-up process results in a first pass subdivision of the image that can ground
semantic analysis. Recognition: High-level vision uses perceptual knowledge to link regions to perceptual
schema instances. Instantiation can be purely bottom-up data driven (e.g. SKY), or results from higher
level knowledge linking data to context (e.g. roof instance can be associated by a region both on the basis of
the bottom-up data and due to the spatial relation of the region to the SKY instance). Finally, instantiation
can be purely top-down driven (e.g. a WALL instance can be invoked as a hypothesis for what is below the
roof). In this case, the system now interacts with lower-level vision to see if bottom-up data can be found to
match this hypothesis). Schema instances compete and cooperate to interpret the different regions. (Right)
The output of the process showing the final hypotheses (labels) on which the cooperative computation has
converged.

(comprehension and learning) and visual processing.

1.4.2 VISIONS: A Schema Theoretic Model of Scene Interpretation.

The core tenets of Schema Theory are best illustrated by discussing VISIONS Schema System (Draper et al.,
1988), a schema theoretic model of scene interpretation. This model will also serve as our starting point for
our scene description model.

VISIONS implements a knowledge-based (expert) system of scene interpretation. Given a scene, the
model assigns an object-level perceptual interpretation to each region (e.g. Tree, House, Road, Human,
etc) (see fig. 1.6). It does so by adopting the Schema Theory design philosophy . In order to insist on the
schema theoretic aspect of the VISIONS process we will discuss the model from this perspective, following
the interpretation of the model presented in (Arbib, 1989) (see Figure 1.7).

Schema and Schema instance In VISIONS a schema is a symbolic unit of high-level perceptual knowl-
edge. Schemas organized into a schema network form the content of a Long Term Memory (LTM): the
knowledge the system is endowed with over a certain domain. Figure 1.7 shows the LTM component on
the right-hand side. It is composed of a network of object-level schemas, as well as scene-level schemas (see
below). Each object schema carries defines (1) sources of positive and negative evidence supporting the
presence of the object, (2) strategies for applying the object knowledge, (3) A function F that defines how
to map the evidence onto a confidence value.

When a schema is supported by enough evidence, it is invoked in a Working Memory (WM) as an
executable copy: a Schema Instance (SI). Each SI represents an active hypothesis that an object is present
in a region of the scene. Each runs as a separate process in a WM implementing a coarse parallelism well
suited for high-level vision. Multiple instances of the same schema can be invoked in WM if the same object
is hypothesized to appear at multiple location. The role of a SI is to gather support for its hypothesis. This
support can itself be a SI for another object or object part (a WINDOW hypothesis can support a HOUSE
hypothesis). SIs can therefore form cooperation networks. Each SI has a confidence value (derived through
the F function). This confidence value is dynamic since it varies based on the state of the system (new
evidence can appear or be evidence can be removed).
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Figure 1.7: VISIONS. Informal description highlighting the schema theory design philosophy (adapted from
(Arbib, 1989)). The Visual Working Memory (WM) of VISIONS interprets the current scene by a network
of parameterized instances of schemas from Long Term Memory (LTM). These schema instances are linked
to the visual world via an intermediate database (here represented by the image feature groupings) that
offers an updatable analysis of the division of the world into regions that are candidates for interpretation
as agents and objects, possibly in relation with each other.
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The VISIONS system combines bottom-up and top-down processing. Low-level features can be extracted
from the image, leading to the instantiation of object instances that provide hypotheses as to what those
features represent (Bottom-up BU). But at the same time, a SI can predict the existence of an object,
spawning a new SI which in turn will predict the existence of some low-level features. This prediction can
then be verified by sending requests to low-level processes (Top-Down TD).

The system is seeded with some schema instances that represent the initial hypotheses. The simultaneous
processes of BU and TD define the dynamics of the system.

Schemas in VISIONS are extended beyond objects. Schema can also define knowledge about perceptual
contexts or configuration. A schema can be associated to a “sub-scene”, whose schemas are related to their
parent sub-scene in predictable ways, in the same way an object part is related to an object. This introduces
the critical idea that a visual is not simply a collection of objects but itself a complex construct consisting of
multiple sub-scenes. The relation between object and scene/context is blurred in this view. As the authors
note: “At a sufficient distance, a house is an object to be recognized as a whole. At closer range, the same
house also functions as a context for its parts (roof, wall, etc).” Beyond the features or object levels, the
sub-scene defines a complex perceptual cognitive representation, that captures both the highly structured
aspect of scene representation and the more ecological level of cognitive unit on which humans base their
high-level perceptual operations (Itti and Arbib, 2006).

The network of visual schemas which forms the Visual Long Term Memory encompasses straddles per-
ceptual and general world-knowledge. The knowledge that a HOUSE is generally composed of DOOR and
WINDOW is both perceptual in the spatial relations it defines but also general world-knowledge.

Each set of active SIs and their relations correspond to a (partial interpretation) of the visual scene,
spanning multiple levels of granularity (object parts, objects, sub-scenes, scene).

Confidence value and representing uncertainty At each time step, all schema instances are assigned
a confidence value as a way to represent the degree of uncertainty associated with the perceptual hypotheses
they carry. Confidence values play a central role in the dynamics of schema theoretic system since they
are used to define the outcome of cooperations and competitions between schema instances (see below).
VISIONS uses a simple five point scale for uncertainy, whose value is derived on based on purely heuristic
combination of evidence. . SI invocation process rests however on a distinction between key evidence that
are required to trigger the invocation of a given SI and secondary evidence that only impacts the confidence
value.

Cooperative computation (C2) Implementing computation in the style of the brain, Schema Theory
relies on cooperative computation (C2) as the driving force behind the system’s dynamic. Schema instances
active in a working memory form cooperative interaction networks; cooperation occurs when a SI recog-
nizes another SI as supporting its own hypothesis. They also form competition networks; competition takes
place between SI representing conflicting hypotheses. Cooperating Sls reinforce each other increasing their
confidence values while on the contrary, competing SIs inhibit each other. SIs are pruned out the working
memory if their confidence value falls below a given threshold (usually as a result of competition). Coopera-
tion and competition are always local to the SIs involved and conflict resolution is therefore carried out in a
distributed fashion. Cooperating SIs can coalesce, forming schema instances assemblages. Each assemblage
corresponds to a set of object hypotheses that are compatible both from a spatial and world knowledge
perspective. Each assemblage is a (partial) interpretation of the scene.

VISIONS implements a crude version of C2 in which dynamics is greatly simplified by resolving com-
petitions as soon as they appear (by choosing the SI with the highest confidence score), by relying on a
discretized 5 points confidence scale, and finally by simulating the fully distributed aspect of computation
within a working memory by using a blackboard architecture that keeps track of the state of each processes.
If C2 and its dynamic is ideally suited to develop brain models, it comes with its own set of issues, in par-
ticular the problem of convergence. VISIONS does not guarantee convergence; limit cycles are not excluded
even though they have not been observed in practice.

Distributed computation Distributed computation in VISIONS is implemented at two levels: at the
system level and at the schema level. The description of cooperative computation between schema in-
stances presents the first level of distributed computation: a scene interpretation emerges through the
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self-organization of instances into coherent assemblage. Each perceptual hypotheses carried by a schema
instances defines a local context for other hypotheses, and it is through those local interactions (cooperation
or competition) that the system goes from an initial state to an interpretation.

Distributed computation also occurs at the system level between system components. The two main
components are Long Term Memories (LTMs) and Working Memories (WMs) (see above). As seen in
Figure 1.7, the system’s knowledge can be partitioned: schemas are divided into classes/types, each defining
its own LTM. Each schema type can be invoked in an associated WM. Each WM corresponds to a level of
scene interpretation and interacts with other WMs (by linking to hypotheses that are active at a lower level,
by supporting higher-level hypotheses, or by hosting SIs that results from top-down hypotheses).

VISIONS, as seen in the left-most panel of Figure 1.7, can be interpreted as a hierarchy of working
memories, each keeping track of relevant perceptual hypotheses at different level of abstraction. Low-level
routines that extract basic features such as color and edges serves as a basis for intermediate level routines
deriving hypotheses regarding shapes, contours, texture etc. Those become the support for object and
sub-scene hypotheses. Top-down interactions are simultaneously at work.

As mentioned above, distributed computation (C2 within WM + component interactions) is not imple-
mented through direct acentric information exchange between SIs or between components. The system uses
a global blackboard architecture to make the result of each process available to all the other; segmentation
of the blackboard allows for some level of modularity. This points to the difference that exists between
Schema Theory as a design philosophy and its implementation: a model can be schema theoretic even if it
only approximates some of the computational tenets.

1.4.3 Dynamic Cooperative Computation: A Core Principle of Cognitive Mod-
eling

The use of Cooperative Computation is a core step in building computational cognitive models. It has been
shown to adequately capture the known properties of cognitive operations (McClelland, 1993). In particular,
it captures:

1. The prominent role of context (state) in disambiguating upcoming inputs (cooperation, e.g. in character
recognition (McClelland and Rumelhart, 1981)).

2. The graded/analogous nature of the confidence associated with cognitive representations as seen
through their influences on many cognitive outcomes (e.g. category membership).

3. The temporally gradual nature of the propagation of information between interactive cognitive pro-
cesses (e.g. influence of temporal distance between predictive contextual cue and target to recognize on
reaction time), which also points to the gradual accumulation of information supporting a particular
cognitive outcome.

4. The interactive nature of the cognitive processes in which multiple levels of computation can simultane-
ously support decision processes, with cooperation between levels ensuring the (e.g. scene recognition
(McClelland and Rumelhart, 1981; Arbib et al., 1987).

The C2 approach is also suited as a support for computational cognitive theories since:

5. Competition between mutually exclusive cognitive processes/representations has been shown to be an
effective way to simulate cognitive level dynamics (Feldman and Ballard, 1982) (at the perceptual level
(Grossberg, 1978) as well as in the motor domain (Cooper and Shallice, 2000)). Competition plays in
particular a general role of figure-to-ground contrast enhancement Grossberg (1982, 1977) (a concept
that can be lifted to the more general emergence of a cognitive pattern).

6. The parameter space of the C2 dynamics extends the symbolic operations and embeds them within a
system that can account for idiosyncratic variability (based on the speaker, the situation, the mental
state, the task), a good example being (Cooper and Shallice, 2006; Cooper et al., 2005)) where this
dynamics has been shown to model the self-organization of motor programs and the deterioration of
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the process in apraxic patients (and also (Vosse and Kempen, 2000) although the C2 properties of the
system differ slightly from those mentioned here?.)

To avoid any confusion, it is worth noting clearly that in all these types of network models as well as in
Schema Theory, units/schema networks do not have vocation to represent actual brain neural networks:

“The units do not correspond to individual neurons, nor do the connections correspond to individ-
ual synapses. Rather activations of units represent representational states of a processing system
and connections capture constraints that hold among these representational states” (McClelland,
1993).

1.4.4 Schema Theory: From VISIONS to COAST

Cognitive Architecture Schema Theory (COAST) was designed to provide a framework to implement schema
theoretic models, framework that is then, in the course of this work, used to develop a novel model of language
processing (Template Construction Grammar) and of vision-language interactions (Schema Architecture for
Language-Vision InterActions (SALVIA)). This is the neuro-cognitive computational research program that
will be detailed in the following chapters.

VISIONS highlights the role that Schema Theory plays in allowing for modeling complex high-level
cognitive processes that cannot yet be fully reduced to models directly implemented by neural systems.
Early components can be refined to closely approximate what is known of early visual processes, while the
high-level ones uses symbolic representations and have vocations to be eventually replaced by schema systems
as our understanding of high-level vision improves (which has proven to be quite a slow progress).

Schema theory based model require to choose a way to decompose a system into distributed components
and stipulate how those should interact. COAST directly adopts this philosophy all models are defined
as systems-of-systems (SoS) on which distributed computation takes place. This decomposition is key to
building systems can evolve and be refined, integrating novel insights as the knowledge of a brain system
changes but also highlighting the processes that require better understanding. The level of coarseness of
a component/sub-system can vary and eventually be replaced by a schema system incorporating a more
detailed model of the function it preforms, without having to necessarily change the rest of the system.
Fig. 1.8 provide a general description of the type of systems of systems-of-systems designed by COAST.

This system-level top-down approach to modeling offers a necessary counterpart to the bottom-up ap-
proaches which focus on detailed analysis of a single process. In distributed systems and in particular in
those simulating brain functions the challenges of defining the hierarchy of functional decompositions and of
understanding the principles that allows for the integrations of dynamically interacting parts into a coherent
whole requires its own modeling framework as it raises questions that cannot be solved at the scale of single
processes modeling.

VISIONS offered a direct view into the role played by the concept of schema and schema instances (SIs)
in designing different types of knowledges and their application. COAST follows these features of knowledge
design. COAST relies at its core on schema, schema instantiation as schema instances, as well as on the two
main sub-systems Long Term Memory (LTM) and Working Memory (WM), which both retain a definition
compatible to that of given in the discussion of VISIONS.

COAST departs from some of the processes defined in VISIONS in order to move Schema Theory in a
direction that brings it closer to the requirements imposed by brain theory. From a brain theory perspective,
cooperative computation plays a key role in the design of schema theoretic models: cooperative computation
(C2) belongs to a core set of fundamental brain operating principles .

Contrary to the VISIONS Schema System, COAST defines C2 as a dynamic process. COAST schema
systems are hybrid systems. Schema instances have continuous activation values (confidence value), functions
of time. The cooperation and competition is a-centric and distributed (no use of blackboard). Competition
is therefore not instantaneous but rather the result of the system’s dynamics through the network of compe-
titions links. Some simplifications are made in COAST. Instantiation strategies and confidence functions are
shared among a schema type and are defined by the WM in which they interact. In the current model, most
schemas do not define their own processes but rather store static data. But this limitation is not inherent

2Competition takes place between cooperation links rather than between units.
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Figure 1.8: System-of-System approach to building neuro-cognitive models. Each box represents a schema
carrying a function F; and and a time-dependent activation value a;(t). Each schema receives inputs both in
terms of information flow (solid lines) and activation signals (dashed lines) from other schemas. The main
addition to the classic idea of algorithmic/functional composition of concurrent asychronous systems, lies in
the use of the activation values that can dynamically reshape the way the computational processes are used:
it can flexibly re-organize the composition of processes of the system while the actual sub-processes are kept
stable in their function. This is a key characteristic of brain systems: a single sub-system can perform a
function that will then be shared amongs multiple functional systems. It is the role of brain theory and
brain science to understand what those functions are, how they are organized, and to do so in a way that is
not task specific.
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to the COAST framework and results from the current state of implementation. The details of COAST are
given in Appendix A

Schema Theory embraces the idea that the goal of computational cognitive neuroscience constists in
building models both from the bottom-up: starting with well defined small networks that are accessible to
detailed neurobiological experimentation, and from the top-down: modeling complex cognitive systems for
which we have little access to detailed biological data but, for what data has been gathered and existing
phenomenological computational models, require computational understanding of how a function can be
both decomposed in a concurrent system. Only the dialectic between those two approaches can help navigate
between Charybdis of the explosion of fine-grain myopic perspectives and the Scylla of hyperopic systems
whose desire to synthesize combined with the difficulty to revise their theory result either in the Ptolemaic
approach of constantly adding epicycles and amendments or in the idealist tendency to disregard as false or
unimportant the bottom-up models that do not match their view. Schema Theory, among other approaches,
offers a methodology to build top-down model whose very objective is to be revised, specified, re-organized,
as soon as more data and model emerge from bottom-up approaches.

1.5 From Gaze to Speech: the Template Construction Grammar
Research Program

Template Construction Grammar (TCG) has been at the center of a research program focused on building a
schema theoretic account of language processing with an emphasis on the role of visual schemas and on the
way humans are able to talk to each other about what caught their attention, producing or comprehending
description of visual scenes. Initial work was able to show how models of goal oriented attention guidance
models ((Navalpakkam and Itti, 2005) encompassing both top-down and bottom-up attention mechanisms,
can be used to analyze how linguistic and visual information interact (Itti and Arbib, 2006). In particular,
this work put forward the question of how the temporally unfolding sequence of subscenes, that are built by an
active visual system parsing a visual scene, can be linked to unfolding sequence of grammatical constructions
used to express the semantic content of the scene, or vice-versa, how the grammatical constructions received
during comprehension interact with the way the visual system will parse a visual scene. (Arbib and Lee, 2007,
2008) lifted the classic VISION schema model of visual scene recognition (Draper et al., 1988) to incorporate
the semantic representations necessary to package the content of visual schemas into a format that can
be made accessible to the language system (SemRep). They developed in parallel the TCG construction
grammar framework that supplemented schema theory with “linguistic schemas” capable of mapping the
SemRep onto utterances through a dynamic and incremental process of cooperative computation. Making
contact with behavioral data, later work showed how the model was able to account for the qualitative
variations of type of utterances subjects generate when asked to describe a scene under various time pressure
conditions (Lee, 2012).

1.6 Outline of the Thesis

The next three chapters focus on language production. Chapter 2 and 3 introduces describe how the novel
Schema Architecture Vision-Language InterAction (SALVIA) cognitive model simulates the dynamic and
incremental interactions between the visuo-attentional system and the language production system. By
simulating the production of scene descriptions, SALVIA provides an explicit framework to study the coor-
dinated distributed processes that support visual scene apprehension, conceptualization, and grammatical
processing leading to utterance formulation. Those chapters follow Kuchinksy (Kuchinsky, 2009) and reframe
the psycholinguistic debate regarding the relations between gaze patterns and utterance forms: moving away
from a dichotomy between serial modular (Griffin and Bock, 2000) and interactive views (Gleitman et al.,
2007), they show that those can both be explained simultaneously as two ends of a spectrum by simulating
the impact on the system’s dynamics of variations in the relative temporal characteristics of processes and
in their modulation by task requirements and scene types. Chapter 2 introduces the SALVIA model while
Chapter 3 presents the simulation results. SALVIA simulates the effect of attention capture on the order of
gaze patterns and show how the model can account for preferential emergence of meaning to form mappings
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that package in their information structure the effect of perceptual saliency, with a particular focus on the
active vs. passive construction. However, as a necessary first step, it is necessary to start by showing how
SALVIA can model empirical results regarding the impact of time pressure on the quality of utterances pro-
duced (structural compactness and grammatical complexity). This first step is fundamental: it is through
(temporal) constraints imposed on the system that the complex interactions between language and visual
attention are systematically put to use and therefore reveal themselves at a behavioral level. SALVIA not
only provides computational foundations for the empirically-based informal account of Kuchinsky, it also
formalizes her theory and suggests new empirical questions, offering a computational framework on which a
dialogue between experimentalists and modelers can be grounded.

SALVIA makes use at its core of a novel model of grammatical processing: Template Construction
Grammar (TCG). Chapter 4 offers a formal overview of TCG as a computational construction grammar
(CompCxG) framework for language production. TCG was developed as part of a brain theory modeling
effort to build a system-level neuro-computational model simulating the dynamics at play during language-
vision interactions in the context of online visual scene description production or comprehension. Rather than
developing a CompCxG handling a wide scope of grammatical constructions, the TCG framework focuses on
modeling dynamic adaptive interactions between incrementally built semantic and grammatical structures
during online language processing. Schema Theory (ST) provides guidelines to implement cognitive-level
hybrid computational computational models that operate in style of the brain. TCG extends schema theory
to language.

Chapter 5 operates a double shift in perspectives. First, in order to fulfill the overall goal to model
language use, production cannot be the end of the story. Language as a social tool for communication cannot
exist but as supported by both a production and comprehension system. The next two chapter will therefore
tackle the challenge of turning SALVIA into a model language comprehension. Second, so far SALVIA has
only made contact with behavioral results. If it does qualify as a schema theoretic cognitive model, it does
not yet qualify as a neuro-cognitive model. As the focus is turned to language comprehension, it will also be
turned toward neurolinguistic data and in particular neuropsychology results regarding agrammatic aphasia.
The second goal will therefore be to incorporate and simulate neurolinguistic data into the design of the
SALVIA model of language comprehension. This lead to the extension of the conceptual modeling discussed
in (Barres and Lee, 2013) that proposed to build the comprehension model as a two-route model comprising
both a Grammatical and a World Knowledge route. This chapter provides a conceptual overview of the
challenges and of the SALVIA comprehension model.

Chapter 6 is the computational counterpart of the Chapter 5. It details the computational underpinning
of TCG and SALVIA as computational model of language comprehension. It details successively the processes
supporting the Grammatical and World Knowledge routes before tackling the question of their integration
within the Semantic WM. It provides simulations results that describe the model at work. Finally, it goes
back to the question of agrammatic comprehension and shows how SALVIA provides a novel interpretation
of the tripartite divisions in their comprehension performances patterns on active vs. passive voice sentences
described by (Berndt et al., 1996).

Chapter 7 is its own self-contained work. It once again changes perspective, this time to tackle the
question of how computational model of language can make contact with brain data and in particular with
EEG recordings. It extends the technique of Synthetic Brain Imaging (SBI) introduced by Arbib et al.
(1994) (see also (Arbib et al., 2000)) to include a tool to generate Synthetic Event Related Potentials
(Synthetic ERP). This chapter only makes a first step towards building the Synthetic ERP toolbox, but
presents simulation results that highlight the importance of developing quantitative methods to bridge the
gap between conceptual and computational neurolinguistic models.

SALVIA offers a cognitive model, and, in its link to aphasia data, it made a first step toward becoming
a neurocognitive model. However, much remains to be done in order to go from cognitive to neurocognitive
computational modeling. The last chapter thererofre opens up the discussion of the neural substrate of the
language production and comprehension system. Since proposing a direct mapping between SALVIA and
brain systems would be doomed to failure, this chapter rather first proposes a summary of the neurolinguistic
results regarding the neural architecture of the language system supporting comprehension. It insists on the
consensus that has emerged regarding the multi-route architecture of the comprehension system, and in
particular on the distinction between ventral and dorsal routes that could provide a coarse anatomical
correlate of the distinctions between semantic and syntactic processing respectively. It places these results in
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relation with the multi-route architecture of the visual system and puts forward direction for future research
on the neural level interactions and interfaces between language and visions. Narrowing the focus to a
single brain region, the hypothesized roles of Broca’s area in language comprehension and production are
then analyzed. It seemed important to do so given both its historical significance in neurolinguistics and its
relation to brain functions that are more and more commonly regarded as having played a key evolutionary
role in the emergence of our linguistic capacity (be it manual dexterity (Arbib, 2012), or cognitive control).
Finally, the difficult question of how the brain constructs meaning from language is discussed. The goal of
this final section is both to highlight the many confusions that contaminate this field of research, to offer a
map of the terrain, and to put forward the position that computational neurolinguistic theory requires to do
away with syntax centered approaches for a focus of the meaning creating processes, contrasting language
against the many other ways in which humans make sense of the world in order to act upon it.
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Chapter 2

SALVIA: An Implemented
Schema-Theoretic Framework for
Investigating the Linkage of Vision
and Language Production

“Figuratively speaking, every animal subject attacks its objects in a pincer movement - with one perceptive and one
effective arm.”

Von Uexkull

A Foray into the Worlds of Animals and Humans: With a Theory of Meaning

“Contra vim mortis non crescit salvia in hortis.”

Medieval adage

2.1 Introduction

Psycholinguistics has made great strides those past twenty years in investigating language production in the
here-and-now.

The Visual World Paradigm (VWP) provided an empirical procedure to study the dynamic interplay, at
the behavioral level, between language production and visual attention (Tanenhaus et al., 1995; Henderson
and Ferreira, 2013; Knoeferle et al., 2016).

The basic procedure consists in asking a subject to produce a description of a scene while her eye-
movements are recorded using eye-tracking. The VWP yields two time series corresponding to two overt
behaviors: the sequence of fixations and saccades, and the utterance produced.

We propose the Schema Architecture Language-Vision InterAction (SALVIA) as a novel implemented
cognitive-level model of vision-language coordinated and dynamic interactions in the context of the pro-
duction of visual scene descriptions. SALVIA represents a new chapter in an effort to develop a modeling
framework based on brain theory to analyze the vision-language interactions (Lee, 2012; Barres and Lee,
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2013; Barres, 2017; Arbib and Lee, 2008).

Classic models of language production (Fromkin, 1984; Garrett, 1980; Bock and Levelt, 2002) were
developed on the basis of the offline analyses of speech error data. All converge on a multi-stage/module
organization of the language production system (each stage being justified on the basis of a type of speech
error). They broadly agree on a division between a message level, a grammatical level and an execution level:
the message level stipulates the semantic content of the message to be verbally encoded, the grammatical level
(that can be divided in sub-modules including functional and linear ordering) is hypothesized to generate
the translation of the message onto an executable language production motor program (formulation), while
the execution level covers the motor production of the verbal message.

Language processing however, as any neuro-cognitive process, is in essence dynamic and incremental
and those conceptual models largely ignored the temporal aspects of the processes in their description. In
addition, they cannot provide any clue as to how the message is itself generate. The psycholinguistic work
on the VWP addresses those shortcomings. In this framework, the message is generated through the process
of apprehension of the visual scene. And the data collected lead to the revival of two main hypotheses
regarding the nature of the interactions between apprehension, formulation, and execution.

The first one can be traced back to Hermann Paul and proposes a direct connection between the fixation
order and word order (Paul, 1970). According to this hypothesis apprehension and formulation go hand in
hand and the sequentiality of language directly reflects the sequentiality of the concepts that are retrieved
on the basis of the perceptual parsing of the scene. This behaviorist take on the problem finds is cognitivist
counterpoint in the opposite claim that was first put forward by Wundt and then by Lashley according to
whom apprehension and wholistic conceptualization of the perceptual content necessarily precedes formu-
lation: The speaking subject encodes events, at least coarsely, before starting formulation. Formulation is
therefore considered to be the sequentialization of a wholistic structure (Wundt, 1970; Lashley, 1951).

Through the application of the VWP, each position has found a modern counterpart and at least partial
confirmation. According to Griffin and Bock 2000 apprehension of the event structure, at least at a coarse
level, precedes the formulation process. However, after production starts during extemporaneous speech,
eye-movements appear to be piloted by the formulation process as indicated by the orderly relation that
exists between gaze sequence and word order.

The authors conclude that, in the spirit of the model proposed by Wundt, apprehension sets the stage
for formulation to begin, formulation that is then an incremental process involving feedback effects on the
visual-attentional processes, but always on the basis of the initial event apprehension.

Using Attention Capture Manipulation (ACM) to subliminally control the subject’s initial fixation posi-
tion, Gleitman et al. (2007) found effects of initial gaze position on formulation which points toward some
degree of influence of visuo-attentional dynamics on formulation. A closer look at their results leads them
to endorse an even stronger hypothesis in which apprehension and formulation are in full interaction. Gleit-
man et al. offer a modern version of Paul’s view in which there is a reliable relationship between initial
gaze patterns and word order. Against a behaviorist view however, the authors postulate an active role for
intermediary cognitive structures, mediating the impact of visuo-attentional dynamics on linguistic form.

In parallel with the question of independence or interaction of apprehension and formulation, Kuchinsky
proposed to organize the two conceptual views supported respectively by Griffin and Bock on the one
hand and Gleitman et al. on the other as “linguistic guidance” vs “perceptual guidance” respectively
(Kuchinsky, 2009).

The perceptual guidance view, in the wake of Paul, emphasizes the role of bottom-up driven attentional
shifts on apprehension and formulation. In contrast the linguistic guidance view, in the wake of Wundt-
Lashley, hinges on the idea of “seeing-for-saying” (similar to the notion of “thinking-for-speaking” put
forward by Slobin (Slobin, 1996)), and emphasizes the role of top-down driven attentional shifts in the
generation of scene description, with the top-down signals originating within the language system.

We propose that those two views taken together can be synthesized into a model that involves two types
of incremental dynamics.

The Wundt-Lashley view posits a sequentialization of an already built wholistic semantic structure which
suggests a serial relation between apprehension and formulation, while the linguistic guidance principle that
emerges from Griffin and Bock suggests an important role of feedback from linguistic system to perceptual
system (again “seeing-for-saying”). That is, the system starts with event level apprehension that gives
a, possibly coarse, wholistic semantic structure on which is anchored the formulation process, formulation
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Griffin and Bock 00 (M1)

Gleitman et al. 07 (M2)

Original conceptual positions

Wundt-Lashley

Hermann Paul

Recorded ACM effects

+

Attentional processes <+ Linguistic processes

Linguistic guidance (+)

Perceptual guidance (—)

Apprehension <> Formulation

Serial (—)

Interactive (=)

Main level of linguistic incrementality Structural incrementality Lexical incrementality

Table 2.1: Summary of the differences between the two VWP-based models of visual scene description put
forward bv Griffin and Bock (2000) (M1) and by Gleitman et al. (2007) (M2). X « Y indicates a question
regarding the nature of the interactions between processes X and Y. M1 and M2 respectively correspond
to modern extension of the original conceptual positions of Paul Wundt-Lashley and Hermann. M1 presents
apprehension as temporally preceding formulation, while M2 posits an interactivist account of the relation
between apprehension and formulation. M1 insists on the top-down impact that linguistic process can have
on the attentional processes (linguistic guidance) while M2 focuses on evidence pointing to the causal impact
of saccades sequence onto linguistic form (perceptual guidance). M1 and M2 both highlight the incremental
aspect of the linguistic processes but M1 focuses on the role of structural incrementality (incremental building
of the semantic and syntactic structures) and M2 on the role of lexical incrementality (word choice).

process that can then send top-down signals back to the visuo-attentional system. Here the incrementality
emerges from an outer feedback loop from the formulation system to the visuo-attentional system. The
work by Gleitman et al. establishing the validity of perceptual guidance suggests that incrementality can be
observed at the level of the transfer of the dynamically apprehended scene onto the formulation stage. This
incrementality is driven by attentional shifts triggered by bottom-up saliency signals. Our model therefore
incorporates both types of interactions and show how perceptual guidance and linguistic guidance can be
seen as the two end of the spectrum of the system’s behavior, and are triggered by the impact on the system’s
dynamics of two key task dimension: scene types and time pressure.

The main question that is not addressed is the timing of the interactions in the system, including that
of the combination of BU and TD cues. The use of both prepared and extemporaneous speech production
introduces a key element in the analysis of the interaction dynamics between visuo-attentional and linguistic
system: that of time pressure. Changing the temporal requirements of the task offer not only an important
empirical test case, but it also points to a core test case for computational models that should be able to
properly handle the variation in production dynamics introduced by time pressure.

2.2 The Schema Architecture Language-Vision Inter Action (SALVIA)
Cognitive Model

2.2.1 From VISIONS to SALVIA: Towards a Schema Theory Approach to Lan-
guage Processing

The Schema Architecture Language-Vision InterAction model (SALVIA) applies Schema Theory and ex-
tends the architecture proposed by VISIONS to a model of visual scene description. VISIONS focused on
interactions within the Visual WM between various types of perceptual schemas. SALVIA zooms out to
tackle a cognitive system linking perception (vision) to action (language production). If focuses on modeling
the interactions between the various working memories linking the dynamics of visual attention to that of
utterance production.

Figure 2.1 presents an informal outline of the cognitive processes that needs to be articulated within
SALVIA (the processes that are directly tied to sensory-motor systems - e.g. saccade system - are not
represented here). Linguistic structures, at a cognitive level, are to be understood as interacting with a
network of modal representations (Jackendoff, 1997). During language use, those directly or indirectly
contribute to generating (production) or interpreting (comprehension) the conceptual structure or message
(for a more in depth review of the question of semantic processes and in particular of the modal/amodal
debate regarding the nature of semantic representations cf. Ch. 8, sec. 8.4).
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Figure 2.1: Informal view of how SALVIA extracts the visuo-linguistics interactions from the network of
interfaces that was proposed by Jackendoff (cf. ch. 1, fig. 1.1) and reframes them in terms of a network
of three working memories (WM) (VisualWM, SemanticWM, and GrammaticalWM). The Semantic WM
plays the role of hinge articulating the visual and grammatical processes.In comparison to the static picture
provided by Jackendoff, SALVIA concerns itself with the incremental and dynamic aspect of the coordination
processes that take place. Dashed circles mark highlight the fact that the states of each working memory
is time dependent and that the different states of the three WM are coupled and interpendendant at the
interfaces. Finally, SALVIA moves away from the description of the cognitive structures to highlight their
interactions with sensori-motor systems Attention-Vision (right) and Utterance generation (left).

The SALVIA model goes beyond the static informal representation of relations between representations
(Fig.2.1): representations and knowledge are interpreted as schemas that become part of dynamically in-
teracting systems (here working memories). SALVIA focuses only on the vision-language interaction, and
applies the schema theoretic method to highlight the interactions of what are now modeled as three working
memories (WM): a Visual WM which encompasses both visual and spatial representations, a Semantic WM
in which the conceptual structure is built, and a Grammatical WM in which the grammatical structure is
built. We chose the term grammatical structure instead of syntactic structure to highlight that we approach
grammatical processing as going beyond the purely syntactic level.

By focusing on the vision-language online interactions, SALVIA addresses a key computational question
raised by theories of online situated language production: How does the human cognitive system orchestrate
the “seamless” integration and coordination of multiple time-dependent processing states ultimately resulting
in the coordination of two overt sequential behavior, utterance production and attentional scene parsing.
(see the Coordinate Interplay Account model (Crocker et al., 2010)).

SALVIA expands the scope of schema theory by lifting and updating the architecture of VISIONS to
a model of language production of visual scene descriptions. Figure 2.2 presents an informal view of the
SALVIA architecture that highlight its extension of the VISIONS schema system.

The model offered in VISIONS, if it provides a core basis for the schema theoretic analysis of visual
processing, remains silent with respect to the two key aspects our work focuses on: (1) attentional processes
are absent from the visual system which focuses on object recognition. Incrementality of processing in the
model only derives from the C2 dynamics that pilots the self-organization of visual schema into cooper-
ation assemblage combining bottom-up and top-down perceptual knowledge (incrementality from internal
dynamics), but does not include the incrementality stemming from the visuo-attentional parsing of the scene
(incrementality from active-perception). It is worth noting that another type of incrementality is tackled by
neither VISIONS nor by the model we propose: the incremenality due to the inherently dynamic nature of
the external environment (incrementality from external dynamics). (2) In addition the model stops at the
level of object recognition and does not attempt to make any connection to language.

VISIONS can nevertheless be seen as the historical starting point for our current model. Navalpakkam,
Itti and Arbib (Navalpakkam and Itti, 2005; Itti and Arbib, 2006) went one step further. The Salience Vision
and Symbolic Schema (SVSS) model remains on the of the only existing model to incoroporate bottom-up
and top-down saliency signals in simulating saccadic system. Their model added a symbolic WM (which they
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call Short Term Memory STM) that extends the visual WM of VISIONS by storing symbolic/conceptual
schemas which, in conjunction with a symbolic LTM containing conceptual world knowledge, can be used to
perform basic inferences that in turn shape the top-down saliency signal orienting the visual attention.

In order to focus our work on the Vision-Language interactions, we will abstract away from much of the
detailed modeling of the detailed sensory-motor schemas that form the two-way interaction of the SALVIA
model with the outside world. We will assume that we are working with the output of a visual processing
system that incorporates the insights of both VISIONS and SVSS offering high level object recognition as
well as the possibility to orient attention on the basis of both bottom-up and top-down saliency signals.
The detailed neuronal implementation of the saccadic motor schemas will not be incorporate but assumed
to support the high-level algorithmic gaze orientation schema (but see (Dominey et al., 1995; Dominey
and Arbib, 1992)). Similarly, the model will not tackled the motor articulation schemas supporting speech
production (but see (Tourville and Guenther, 2011; Bohland et al., 2010)).

SALVIA is broadly divided between two main system types: Long Term Memories (LTM) and Working
Memories (WM). LTMs store the long term knowledge in the form of schema networks. The systems
defines three main types of LTM: A Perceptual LTM which contains the perceptual knowledge and broadly
corresponds to VISIONS’s LTM, a Conceptual LTM which contains the conceptual world knowledge, and
a Grammatical LTM which contains the grammatical knowledge in the form of construction schemas (see
below for definition of constructions).

Each working memory is a simplification of systems that could be represented as having their own complex
architecture. The various LTMs are not independent of one another: the grammatical knowledge needs to
allow the system to express concepts which in turns have to be related to perceptual schemas (among others).
The model makes three simplifying assumptions regarding the LTM architecture: no internal complexity
within an LTM (LTM is defined as a single sub-system), interdependence of LTMs limited to what is built
in at the representational level (i.e. no dynamic interactions), and no learning.

VISIONS defined its Visual WM as a WM network in which schema instances representing various types
of perceptual knowledge engaged in cooperative computation (C2). SALVIA follows the same theoretical
premises and expands them to define a visuo-linguistic WM that consists of a WM network involving a
Visual WM (summarizing the complex Visual WM of VISIONS), a Semantic WM in which conceptual
schema instances are invoked to build a semantic representation (SemRep), i.e. the semantic content to be
included in the verbal description, a Grammatical WM in which grammatical schema instances are invoked
to generate a mapping from the SemRep onto a verbal sequence, and finally a Phonological WM that holds
the sequence of phonological information while it is relevant to the generation of an utterance (Phonological
LTM not represented here). This network of WMs can be broadly divided into a Vision System and a
Language System with the Semantic WM and the SemRep it contains serving as an interface allowing the
interaction between the two.

Beyond the local dynamics, the scene description production processes perpetuate system level cycles
(Fig.2.2, left): bottom-up attentional cues guide scene perception process impacting utterance production
down the line, meanwhile top-down feedback signals emanate from the language system whose goal is to
orient attention toward a location that contains the perceptual information required to pursue the utterance
production (see below).

The following sections describe the various parts of the model in more details. The dynamics involving
schema instances in a WM will only be discussed in detail for the Grammatical WM for which SALVIA
implements the full C2. The dynamics of instances in Visual, Semantic and Phonological WM are simpler
(no C2) and can be easily inferred from that of the Grammatical WM.

2.2.2 SALVIA: Schema Architecture

Beyond the informal framework described above, SALVIA offers a novel implemented cognitive-level model of
vision-language interactions in the context of the production of visual scene descriptions. It is worth noting
that this computational model also serves as a case study for Schema Theory as a general brain-theory based
modeling framework (cf. ch. 1, sec. 1.4 and Ch A).

Schema Theory offers a top-down counterpart to the bottom-up neural network modeling approach. It
focuses on the adaptive and dynamic nature of the interactions between distributed computational units,
respecting the computational style of the brain. SALVIA is part of a new chapter in the application of
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Figure 2.2: Schema Architecture Language-Vision InterAction (SALVIA) model (informal view). The model
is presented here following the same conventions as that used to describe the VISIONS system in Fig.1.7 to
facilitate the comparison between the two models. The right side describes the Long Term Memories (LTMs)
that specify the three main sources of knowledge: Grammatical, Conceptual, and Perceptual knowledge.
Those are defined as schema networks composed, respectively of Construction, Concept, and Perceptual
schemas. The left side presents the Working Memories (WMs) in which the processing takes place. The Visual
WM of vision has been extended by the addition of a Semantic WM, a Grammatical WM, and a Phonological
WM, each associated with the LTM containing the schemas it can invoke (the Phonological knowledge is
not represented as our focus will be on the grammatical processing). If the perceptual processes of VISIONS
are greatly simplified, SALVIA adds visuo-attentional processes that are not present in VISIONS: The scene
perception takes place through the incremental process of attentional parsing. The working memory network
can be divided into a Vision and a Language system on the basis of the nature of the schemas it involves. The
interactions between those two systems hinges on the state of the Semantic WM. As in VISIONS, schema
instances active in WMs are not simply interacting through cooperating computation within a WM but also
through linkages that span across WMs. The left most side of the figure indicates the constant interactions
that exist between on the one hand bottom-up directed attentional parsing of the scene generating semantic
and eventually linguistic descriptions and, on the other hand, top-down requests for perceptual information.
In the Visuo-Linguistic WM, the bolded schema instances indicate those that are directly or indirectly linked
to the vision of the scene currently under attentional focus (a boy). It highlights the interactions between
schema processing and visual attention, without here stipulating whether the attentional focus was the result
of a top-down signal propagated through the WMs, or if the bolded instances are the results of incrementally
growing the states of the WMs following an attentional focus shift toward the boy (bottom-up).
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Figure 2.3: Overview of the computational SALVIA model. Each box corresponds to a system with arrows
indicating message passing. As a Schema Theoretic model, SALVIA is designed as a system-of-systems.
The PRODUCTION SCHEMA SYSTEM box outlines the language production system that was described
in Ch. 4 (cf. fig. 4.1). The model receives a pre-processed visual scene as INPUT. OUTPUT1I corresponds
to the utterance output (time stamped string sequence), OUTPUT?2 to the location and size of the visual
attention window at each time. The model makes use of the Schema Theoretic distinction between Working
Memory (WM) and Long Term Memory (LTM) (see below). The core of the system lies in the articulation
and temporal coordination of the three main WM systems: VisualWM, SemanticWM and Grammatical WM.
The key addition that SALVIA brings to the language production model is its integration with visual-
attentional system, not simply as a system that receives incremental semantic content from the latter, but
as a system that can in turn impact the visual processes, organizing the vision-language relations into an
interactive loop. Red arrows indicate feedback signals. The suffix “(P)” is used as a reminder that those
systems are part of language production processing and here no assumption is made as to their relation to
the comprehension processes (cf. ch. 6 and ch. 5).

schema theory to language (Arbib et al., 1987)

At the heart of the model is the schema theory based model of grammar: Template Construction Grammar
(TCG). TCG is a novel implemented computational construction grammar framework. It is part of a more
general effort to develop a neurolinguistic model of vision-language interactions and follows the tenets of
Schema Theory as a cognitive-level brain modeling philosophy Arbib (1989).

TCG has already been used in an implemented model of visual scene description production (Lee, 2012).
But if the previous model was only approximating some of the schema theoretic computation using tradi-
tional computing paradigm, SALVIA offers a fully schema theoretic implementation of the TCG based scene
description model. This chapter will only present (often informally) the aspects of TCG that are key to
understand the SALVIA model. Chapter 4 is dedicated to a formal presentation of Template Construction
Grammar.

The Schema Architecture Language Vision InterAction (SALVIA) model is defined as a schema system,
following the general framework of Schema Theory (cf. ch. 1, sec. 1.4). In particular, the SALVIA model is
a network of systems defining a system-of-systems with in particular the general Scene Description Schema
System including a sub-system: the Production Schema System which encompasses the language related
systems. All the processes defined by the various systems are concurrent. The arrows define the fixed
connectivity between the different systems, the direction of the arrow defines the direction of the message
passing.

Figure 2.3 presents the system level architecture of SALVIA, the formal, implemented, counterpart of the
informal model presented in Fig 2.2. The model takes a pre-processed visual scene as INPUT and outputs
words (OUTPUT1) as well as location and size of the visual attention window (OUTPUT2). Working
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Memory (WM) and Long Term Memory (LTM) are defined following the principle of Schema Theory (see
below). Incrementality of processing is at the core of the model with a particular focus on the temporal
coordination of the three main WM systems: Visual WM, SemanticWM and Grammatical WM (cf. fig. 2.1).

The state of VisualWM is incrementally built to contain an up-to-date representation of the perceptual
content gathered through attentional parsing of the scene. The state of the SemanticWM abstract away
the perceptual details that might be useful for perceptual purposes but irrelevant for verbal description
purposes conceptualizing the perceptual representation. The SemanticWM therefore constantly updates
the semantic representation that define the conceptual content of the description to be uttered. Finally
the GrammaticalWM builds on top of the semantic representation by applying the appropriate language
schema (constructions) to build a mapping from meaning (semantic representation) to form (phonological
representation). FEach of those three systems hosts time dependent states and the main challenge is to
properly handle their temporal coordination. In red are indicated the feedback messages sent from the
language system to the perceptual system which add another layer of complexity to the coordination problem.
The Phonological WM simply hosts the current state of word sequence that have been already chosen as the
basis for an utterance. Those are sequentially uttered by the model as OUTPUT1. The various LTM
contains the knowledge representations that are required for the WM processes to take place (see below for
a description of the role of LTM and WM in Schema Theory). Finally, the Control system impacts the
dynamics of the language production systems based on the goal and task requirement.

In broad strokes and starting with a feed-forward path, an input, defining the visual scene to describe
(see sec.3.2.1) is given to the Subscene recognition system. This system algorithmically simulate the process
of retrieving the relevant percept schemas based on the attentional dynamics (including gaze positions and
focus scope), the content of the input, and the state of the perceptual knowledge defined in the Percept LTM
system (see sec. 2.3). At each time step, the percept schemas that correspond to the region of the input
fixated are instantiated within the Visual WM, updating the state of the scene representation (SceneRep).
At each time the fixation location and the focus scope correspond to OUTPUT?2.

While the Visual WM keeps active the percept schema instances that have been so far retrieved based
on the attentional parse trajectory, the Conceptualizer defines a simple algorithmic system whose role it is
to conceptualize the state of the Visual WM (SceneRep) into the semantic representation (SemRep) held in
Semantic WM.

The Conceptualizer in the present model is kept simple, mapping percept onto concepts with a many-to-
one mapping (see sec. 2.3). This is of course much too simple as conceptualization involves many complex
operations which can depend on factors such as the general task, the communicative goals etc. (see Spranger
et al., 2012; Spranger and Steels, 2015) . However, we deliberately choose to include the Conceptualizer
system, even in a simplified version, in order to both open avenue for future work and allow for comparisons
with other models, as well as to make clear that this important step should not be overlooked within the
general framework of modeling the vision-language interactions.

Starting with the Semantic WM, the systems are all part of the Production Schema System and are
specifically language related systems. It is possible to run the Production Schema System by itself if the
semantic inputs are directly provided to the Semantic WM. We will make use of this option at times by
directly approximating the incremental gathering of perceptual information through the direct definition
of an incremental semantic input (see ch. 3, fig. 3.1). A subsystem of the model can therefore be used to
directly test the impact of the time dependent semantic WM state (message) on the language processing
and ultimately on the type of utterances generated. Focusing now on the language-related systems, the
construction retrieval system (CxnRetrieval(P)) systematically attempts to find constructions schema in
Grammatical LTM whose semantic pole (SemFrame) match a sub-graph of the SemRep, i.e. are candidate
to participate in mapping a sub-part of the message onto a linguistic form. Selected construction schemas are
instantiated in Grammatical WM in which they can enter in the type of cooperative computation described
in ch. 1, sec. 1.4.3) and that will be detailed below(see sec. 2.5).

Based on the dynamic competition and cooperation between construction instances, construction assem-
blages are incrementally built in Grammatical WM. When the system is ready to produce an utterance, the
winning assemblage is read-out, and the resulting word sequence becomes part of the state of the Phonological
WM from which the Utter system can algorithmically generate the utterance output (OUTPUT1).

The Control system is an algorithmic system whose state includes parameters defined by the task (time
pressure) and some characteristics of the speaker (importance of placed on utterance continuity, utterance
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compactness, etc.). The Control system, on the basis of these parameters, can impact the other language
systems and affect the production dynamics (cf. sec. 2.7.2).

The model is not feed-forward but incorporates feed-back connections between modules. The state of
the Phonological WM can impact the grammatical processing by forcing the system, in the case of the
production of fragmented utterances, to try and generate utterance fragments that although disconnected
conform to a certain level of syntactic continuity. The feedback connections between the Grammatical WM
and the Semantic WM plays a key role in the case of the production of grammatical incomplete utterances.
The system can indeed produce an utterance based on a construction assemblage that lacks information
regarding some of the semantic content (e.g. “the boy kisses _” where the patient is missing). In this case
the Grammatical WM can send a feed-back request to the Semantic WM indicating that the part of the
SemRep graph corresponding to the missing information should be expanded in order to be able to continue
the utterance to which the system has committed itself. In turns, the Semantic WM can send a feed-back
signal to the Visual WM which correspond to a top-down attentional signal, promoting the system to guide
the visual attention towards the region of the scene that contains the relevant information.

The SALVIA architecture therefore reflects the core modeling assumptions that had been put forward
by psycholinguistic models while both expanding their scope by incorporating an explicit treatment of the
semantic level (message level) at its core (placing the focus on meaning rather than on syntax), by linking
this level to a model of the active-vision system, and most importantly, by operationalizing those processes
in a way that places time and incrementality at the heart of the modeling problem.

2.3 From Perceptual to Linguistic Meaning via Conceptualization

SALVIA links the language system-of-systems architecture with visuo-attentional subsystems that can pilot
the incremental parsing of the visual scene, keep in perceptual working memory the relevant perceptual
information retrieved, and conceptualize this information into a message that can be process by the language
production system.

Fig. 2.4 highlights the visuo-attentional components of SALVIA. Some sub-systems are only given a
simple implementation. It is however the strength of schema theory to allow the building of models that
can have sub-systems specified at various degrees of granularity, opening the possibility for future refinement
or integration with other models. In the present case, one way to understand the visual-attention schema
system is as a place-holder for a model such as the one proposed by (Navalpakkam and Itti, 2005) and
discussed in ch. 1 fig. 1.4.

The INPUT given to the model is a scene associated with a predefined sub-scene hierarchical structure
(see fig. 2.10). The OUTPUT provides, at each time step the coordinate of the center of gaze in the scene
as well as the size of its associated attentional window, standing for the fact that, for a given fixation point,
the associated covert attention focus can vary in scale from narrow, detail oriented to large. The Visual WM
holds the perceptual schema instances incrementally retrieved from Perceptual LTM.

The Conceptualizer only host simple mapping processes from perceptual to conceptual representations,
but its presence as a sub-system is crucial if only to indicate that a large chunk of the work that has to be
done to understand the language-vision interactions have to focus on the question of how such mappings are
learned and applied on the basis of communicative goals.

The feedback signal emanating from the SemanticWM makes explicit the core hypothesis that SALVIA
implements: during language production, the language production system can opportunistically interrogate
the visual system and pilot the attentional systems from the top-down. The hypothesis here is that this
interaction takes place through the Semantic WM. However, given some of the questions regarding the
embodied nature of the linguistic meaning (cf. Ch. 8), other avenue of communication (possibly more direct)
could also exist, but are beyond the scope of this work

Visual WM

While VISIONS applied processes to the entire scene at once, in SALVIA, as the attentional focus lands
on various regions of the scene, those regions receive an interpretation in the form of perceptual schema
instances instantiated in Visual WM. SALVIA does not replicate the work of VISIONS but assumes that the
perceptual system is able to deliver high-level scene structures and representations (e.g. not simply objects

45



SemanticM

[}

1

1

1

3

E VISUAL-ATTENTION SCHEMA SYSTEM
' Conceptualizer | PerceptLTM
: 7y |
3 Y :
' 1
; Visualwm [¥ »| Subscene recognition |-
' ConceptLTM :
1 A |

Figure 2.4: Focus on the Visual-Attention Schema System. SALVIA only implements a simplified visuo-
attentional system. The goal of this system is to conveniently carry out the minimum set of operations
necessary to highlight and simulate the interactions between feedforward (solid black arrows )and feedback
signals (red dashed arrows) affecting the attention driven building of a high level cognitive representation of
the scene at hand.

tags but also, actions as well as relations). The Perceptual LTM contains a perceptual schema network that
defines the perceptual knowledge endowed to the system (see sec. 2.3)

SALVIA defines a minimal perceptual knowledge with perceptual schemas simply defining type and
tokens hierarchy. Those schemas do not have vocation to be applied to the processing of the image input
which will be assumed to be handled by a system akin to VISIONS not implemented here. The actual
perceptual knowledge associated with each schemas that would allow it to actively participate in the scene
interpretation process need not be stipulated.

SALVTA essentially assumes that the perceptual schema instances that can be invoked in VISUAL WM
to form a scene interpretation is given as input. The incremental order in which those schemas instances
are invoked, updating the state of the Visual WM, depends on the visual-attentional process (see below).
Each perceptual schema instances active in Visual WM, as in VISIONS, carries a pointer back to the spatial
region it covers and (partially) interpret.

Perceptual Knowledge

Fig. 2.5 presents the content of the perceptual knowledge that seeds the PerceptLTM, defined as a schema
network.
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Figure 2.5: Example of perceptual knowledge format used to define the state of the SALVIA PerceptLTM. In
this example, a simple subsumption ontology is used (arrows X « Y signify that “X IS-A Y”). Rectangular
nodes correspond to type of perceptual knowledge whereas hexagonal nodes stand for tokens of perceptual
knowledge. (victorbarres.github.io/media/SALVIA percepts.png)

Although the actual perceptual processes are not implemented in SALVIA, the distinction between types
and tokens stand for the distinction between type level perceptual knowledge (for example COLOR can
be defined over the hue spaces) and specific tokens of such types (for example GREEN correspond to a
sub-space of the hue-space, or a specific person X can be linked to a specified HUMAN perceptual schema.)
Of course this approach has an important drawback: It’s approach to the gradedness of the perceptual
knowledge is simplistic and it does not capture the pervasive role of analogical similarities, the flexibility
of the categorizations, etc. However, it insists on the fact that categorization does not only occur at a
result of conceptualization. Colors can be conceptualized differently according to the linguistic background
of an individual, but this does not mean that at a pure perceptual level, if behaviorally relevant, some other
types of categorizations take place , irrespective of their mapping onto linguistic driven concepts, mapping
that might not capture the distinctions made at the perceptual level. Conceptualizations and concepts are
constrained by their social use through language acts, while perceptual categorization are essentially private.
In a nutshell, the type-token distinction at the perceptual knowledge level can be seen as reflecting perceptual
construals that are somewhat independent of the linguistic ones.
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Figure 2.6: From cognitive level scene representation (SceneRep) to a semantic representation (SemRep).
Although SALVIA does not handle the complex processes underlying the conceptualization of perceptual
content, it holds that such processes cannot be overlooked and, insists that future work will need to focus on
this issue. The figure illustrates informally the core difference that exists between perceptual and conceptual
semantics. (Left) An informal example of a high level perceptual recognition of a PUNCH action. It involves
recognizing, among other things, objects (FIST), its dynamic profile in space, its trajectory in relation
to a object goal. All those are very complex perceptual recognition processes that can, at some level,
be perceptually represented as parametrized form of PUNCH perceptual schema. (Right) This perceptual
representation can then be conceptualized and abstracted into a semantic conceptual representation that
only retains a silhouette of the action that, for example, profiles it as a transitive action linked to two
thematic roles. Here most of the parametric information has been discarded.

Conceptualization

Conceptualizations are defined as percept to concept mappings. The conceptualizer maps percepts schema
instances invoked in visual WM to concept schema instances invoked from Concept LTM into Semantic
WM. Although much work could be dedicated to the conceptualization process, the current model keeps this
stage very simple. The underlying purpose is both to show the necessity of including this step in any model
tackling vision-language interactions while leaving the tackling of this crucial problem for further work.

Having a conceptualization module, allows a more direct comparison of the SALVIA model with other
models and in particular with the Fluid Construction Grammar based suites of architectures for embodied
language use, acquisition, and cultural evolution!. In addition, in the context of building a schema theoretic
model with the explicit goal to incorporate the possibility to test for the impact of various types deterioration
on the system’s behavior, having a conceptualization module will offer the possibility to analyze, at least at
a coarse level, the difference in overt linguistic behavior caused by functional deterioration of the Visual WM
compared to a deterioration of the SemanticWM, as well as, potential deterioration in the conceptualization
process itself.

The Conceptualizer system is initialized with the conceptualization knowledge (see sec. 2.3). The function
of Conceptualizer is made very simple by constraining the conceptualization mapping (taken to be the set of
all the mappings) to be a function. Therefore, given a state of the VisualWM, the conceptualizer can simply
apply the conceptualization function to the percept schema instances forming the SceneRep to generate the
unique corresponding set of concept schema instances that are to be instantiated in SemantiWM.

As concept schemas are instantiated in SemanticWM conceptualizing the (changing) state of the Vi-
sual WM, the initial activity of the concept schema instances is a function of the current activity of the
perceptual schema instances. Conceptualization always results in cross WM links being built between the
concept schema instances and the perceptual schema instances they conceptualize. This allows for activation
signals to flow across WMs with changes in activation levels in perceptual schema instances impacting the
state of the Semantic WM. Such cross WM links play a key role in coordinating the activity levels at the
system level.

IWe refer the reader to (Spranger and Steels, 2015) for a thorough investigation of the acquisition of spatial relations
conceptualizations.
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Conceptualization Knowledge

As discussed above, the conceptualizer in SALVIA simply maps perceptual schema instances onto concept
schema instances (see sec. 2.3. It serves to update the state of the SemanticWM based on the changing
state of the VisualWM: this is not here an active process in the sense that conceptualization is deterministic
and fails to capture the goal oriented decisions that have to take place at this level (but see work in both
FCG and ECG for in depth discussions of this issue Spranger and Steels, 2015; Chang et al., 2006). The
presence of this subsystem is nevertheless crucial as a placeholder in the system for further investigation of
the conceptualization function.

Fig. 2.7 provides a snapshot of the conceptualization knowledge SALVIA is endowed with.
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Figure 2.7: Conceptualizations as many-to-one mapping. Multiple perceptual schemas can be mapped onto
the same concept schema. (victorbarres.github.io/media/SALVIA conceptualizer.png)

Semantic WM: Building the Semantic Representation

As shown in Figure 2.2, the Conceptual LTM defines a network of concept schemas. This forms a repository
for a semantic network model of world knowledge in which concept schemas are connected through hypernym

49



(IS-A) relations. Concept schemas are limited to four types: ENTITY, ACTION, PROPERTY, and semantic
RELATION.

Conceptual schema instances are invoked in Semantic WM to form a Semantic Representation (SemRep).
The instances are invoked if they contribute to the conceptualization of the perceptual scene representation
(state of the Visual WM). At each time step, the SemRep specifies, the semantic content of the message that
has to be expressed linguistically as shown in Figure 2.8.

The expressiveness of the semantic representation is limited in order to focus on its time dependent
nature as an incremental and dynamic semantic structure and on its role as coordination structure between
incremental visual processes and incremental language processes (Discussed below, see Fig. 2.14).

Since all the conceptual relations are binary, the SemRep is conveniently expressed as a labeled (not
necessarily connected) directed graph: edges correspond to RELATION, while nodes correspond to ENTITY,
ACTION, or PROPERTY concept schema instances. No cooperative computation is implemented within
Semantic WM (i.e. the semantic message does not contain any conflict).

The SemRep only encompasses the information that is relevant for the language system. There might
be a large amount of visual information that is used in building the Scene Representation but that is not
transferred into the SemRep. For example, the red color of a roof, as perceptual information, can be a useful
cue to help in the segmentation of the roof from neighboring sky and walls, and in turn, the recognition
of the roof might be an important step in recognizing a house. However, at the SemRep level, all this
perceptual information might led to the instantiation only of a HOUSE concept, the semantic information
to be linguistically conveyed, abstracting away from all the perceptual details that have supported the
recognition of the object the concept refers to.

In SALVIA the conceptualization that pilots the invocation of conceptual schemas is kept simple and
consists of deterministic many-to-one mappings between perceptual schemas and conceptual schemas. This
does not capture the active processes by which a conceptualization is chosen amongst many possible candi-
dates. However, it provides the minimal architecture that captures the dynamic nature of the interactions
between visual and semantic representations.

In the context of vision-language interactions, as in VISIONS, and in line with the theories of situated
cognition (Ballard et al., 1997; Pylyshyn, 2000, 2001; Kahneman et al., 1992), if a SemRep abstracts away
much of the perceptual details used by the visual system in the process of attentionally parsing a scene, any
part of the SemRep can serve as a ‘deictic pointer’ Ballard et al. (1997) capable of re-orienting the attentional
focus back to the visual region the concept refers to. This enables the system to flexibly use the ‘external
world as memory’ O’Regan (1992): The SemRep can be incrementally updated by requesting more details
from the perceptual system through the reorientation of attention towards the region of the external world
where this information is most likely to be found.

From the focus of the current work is on the online dynamics of the vision-language interactions (in the
context of visual scene description production) follows that the model stresses the incremental and dynamic
nature of the semantic representation. As more perceptual information is gathered through visuo-attentional
exploration of the visual scene, the content of the SemRep graph incrementally grows to dynamically update
the content of the message. The goal of grammatical processing is to generate a flexible grammatical structure
articulating the incrementally built SemRep and the production of utterances.

2.3.1 Conceptual Knowledge

The conceptual knowledge of the system is define as a knowledge network. It defines a simple subsumption
ontology. The structure of the model and of the processes it supports however, does not restrict the model to
using this type of representation. The main requirements is that measures of similarity can be performed on
the representations. Pilot work using vector space representations has been carried out, but for the present
purpose, the ontology is sufficient.
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Figure 2.8: From visual processing to utterances: A many-to-many mapping. From left to right. The
visual scene SALVIA has to describe. The visual processing assumes the existence of complex perceptual
processes able to generate high-level perceptual interpretations of the scene input. VISIONS (see below)
outlined what could be part of such a system. Recently, an great amount of models have been proposed
to generate scene interpretations. However powerful their abilities are compared to the historical VISIONS
model, they usually suffer from the same serious limitation in what they count as perceptual representations,
usually limiting it to tagging, unable to reach structured interpretations involving both entities and their
relations (in particular in the case of actions). So it will be assumed here that such models have been able
to overcome this limitation. Based on the outcome of perceptual processing, the perceptual representation
can be conceptualized in many ways. Conceptualizations can vary in the semantic content they encode (for
example in its scope: an outdoor fight vs. a woman wearing a blue dress), but also in terms of what semantic
information is highlighted (Focus). For the punching action, the focus can be on the agent (WOMAN) or on
the patient (MAN). At the utterance level, resulting from grammatical processing generating meaning-to-
form mappings, a given SemRep can yield different linguistic forms: YOUNG(WOMAN) can be expressed
as “young woman” or as “girl”, a focus on the agent (WOMAN) can be expressed in the use of an active
voice (mild focus) or in a cleft subject (strong focus), MAN can be lexicalized as “man” or “guy”. The
paths from given perceptual representation to utterances form a one-to-many mapping. However, for a given
scene, there are actually many ways a perceptual representation can be built. The whole system consists
therefore of a many-to-many mapping.
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barres.github.io/media/SALVIA concepts.png).

2.3.2 Long Term Memories: Various Types of Knowledge

The model defines three types of long term memories (LTMs), each corresponding to a specific domain of
knowledge: perceptual knowledge (Percept LTM), conceptual knowledge (Concept LTM), and grammatical
knowledge (Grammatical LTM) (see fig. 2.2). The content of the knowledge schemas is defined declaratively
and for now there is no learning taking place in the model. We do not claim that those types of knowledge
are not at all related when it comes to the architecture of the brains semantic system, however, we consider
that for our present purpose, they can be thought of as distinct as a first approximation. The question of
their interrelations both synchronically, ontogenetically, and even diachronically (in the case of the cultural
transmission of language and of world knowledge) corresponds to an entire line of investigation on its own,

far beyond the scope of the present work.
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Figure 2.10: An example of scene representation (SceneRep) as a hierarchy of subscenes (See text for details.)

2.4 Visual Attention

2.4.1 Subscenes: A Cognitive-Level Scene Structuring Principle

As was already mentioned in the previous sections, SALVIA assumes that, on the visual side, the system is
able to build complex scene representations. At a cognitive level, a scene representation (SceneRep) cannot
be taken to be a simple set of objects. Itti and Arbib (2006) proposed that visual scene representations are
organized around the construct of (minimal) subscenes. As the visuo-attentional system parses a scene, in
the context of a given task and goal, information about the scene is structured in a hierarchical network of
subscenes that accumulate and package the perceptual content into meaningful cognitive entities. Crucially,
such structure need not be “for language” but can be tied to different goals: for a similar scene, one will
perceptually construct high-level scene representation differently depending on whether the goal is to find
an object, perform an action, or describe the scene. From an evolutionary perspective, the notion of high
level complex scene representation need also not be specific to humans but is likely share with non-human
primates?.

The evolutionary question of how such complex perceptual cognitive structure could have been the basis
on which similarly complex structures specifically “for language” (SemRep) appeared is far beyond the scope
of this work but is part of the overall research program that it is inscribed into (Arbib and Bonaiuto, 2008;
Arbib, 2016b; Arbib and Lee, 2007; Arbib, 2016a, 2010)

2.4.2 Subscene Recognition

In SALVTA, the sub-scene representation level plays a key role. The Subscene Recognition system functions as
an algorithmic placeholder for a host of complex perceptuo-attentional processes. It focuses on implementing
both attention orientation as well as focus selection

Ignoring for now the role of focus and of top-down attentional signals, the Subscene Recognition schema,
will successively generate saccades to each of the subscenes defined in the scene input based solely on their
saliency value (starting from the most salient subscene to the least salient subscene). Upon orienting the
attention to a given subscene, the Subscene Recognition system triggers the instantiation of the perceptual
schema instances associated with the subscene into VisualWM. An uncertainty value associated with a
subscene impacts the duration of this process.

For now the smallest chunk of perceptual information instantiated at a time in Visual WM by the SALVIA
model is that of a subscene (ie a perceptual schema structure). However, there are for now no limitation
as to what perceptual schema content is required to form a subscene, so technically each perceptual schema
could be given its own subscene, leading the system to proceed a perceptual schema at a time.

2All organisms build structures of perception for action, but here the assumption is that the precise nature of those repre-
sentations might be shared with non-human primates.
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The current version of the model implements a very basic mode of inhibition of return (IOR) (the content
of each subscene can only be retrieved once)?.

2.4.3 Attentional Parsing: Building and Navigating Hierarchical Scene Repre-
sentations

As mentioned above, the visuo-attentional parsing of a visual scene is not only incremental in the eye move-
ments but also in the succession of areas that are in focus. This first attentional process corresponds to
attention shifting. However, to take into account the multiscale, hierarchical nature of the cognitive repre-
sentations of visual scenes, shifting attention is at work alongside two other attentional processes zooming-in,
zooming-out.

Instead of simply necessarily working at the level of the entire visual scene, the state of the Subscene
Recognition system includes, at each time step, the specification of a focus area. At each time step, the process
of retrieval of subscene related perceptual information is bound by the current focus area: everything outside
the focus area is ignored until there is either nothing left to perceive within this specific focus area (in which
case the system revert to the whole scene as a default focus area), or until the focus area is modified based
on upcoming signals from another module.

The inclusion of a varying focus area in addition to the saliency driven attentional process, endows the
rather simple Subscene Recognition system with the possibility to model not only the incremental retrieval
of perceptual information based on bottom-up saliency, but also the impact of top-down signals emanating
from the language system (see next paragraph), as well as various perceptual strategies (e.g. breadth-first
vs. depth-first) that emerge from, among other thing, interactions between goal, cognitive constraints, and
input type.

Perceptual strategies will play an important role in the way SALVIA simulates psycholinguistic results
(cf. ch. 3, sec. 3.6).

2.5 Grammatical Processing

The goal of grammatical processing is to generate a flexible grammatical structure articulating the incremen-
tally built SemRep and the production of utterances. The discussion of the model’s grammatical processing
will focus on the key points that are key to understand its functioning in relation to the problem at hand.
We refer the reader to ch. 4 for a full expose of the theory behind the grammatical model.

2.5.1 Template Construction Grammar (TCGQG)

We propose Template Construction Grammar (TCG) as the basis for a schema theory model of grammatical
processing. TCG, as a computational construction grammar, builds on the insights of more complex sym-
bolic models (Embodied Construction Grammar and Fluid Construction Grammar) Steels (2011); Feldman
(2010); Bergen and Chang (2005). TCG however significantly reduces the complexity of the semantic and
grammatical representations tackled in order to better focus on the use of the constructions as language
schemas engaging in C2. A first version of TCG has already been presented both conceptually and compu-
tationally in (Arbib and Lee, 2008, 2007; Lee, 2012). The present work, builds on top of the previous work
while adding some important changes to the model.

A core tenet of construction grammar is that syntax and semantics are not disjoint: each unit of gram-
matical knowledge forming a symbolic whole linking meaning and form knowledge. The example of the verb
alternation contrast between the Theme-object construction “X V'Y infon Z” (Cxnl) and the Goal-object
construction “X V Z with Y” (Cxn2) illustrates this point (Pinker, 2000). They are both abstract argument
structure constructions but their semantic requirements for the verb slot V vary.

(1) “John pours water in the glass”

(2) *“John pours the glass with water”

3The process of integrating SALVIA with the SVSS model (Ttti and Arbib, 2006) will tackle in much more details the question
of modeling bottom-up attentional processes, including IOR.
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Figure 2.11: Constructions in Template Construction Grammar: A few examples. Constructions have a
meaning pole (SemFrame) defined as a semantic graph following the SemRep format defined above. A
form pole (SynForm) is defined as a sequence of slots (undetermined form) and phonological forms (fully
determined form). Slots have vocation to be filled by the SynForm information from another construction and
include class constraints limiting the types of construction that can play such arole (e.g. [N] defines a slot with
the class constraint N). Symbolic links (SymLinks) define the relations between form and meaning: which part
of the SynForm expresses which part of the SemFrame. Those are limited in the current framework to link
between SemFrame nodes and slots. Each construction is assigned a class which in the present case is chosen
to resemble canonical syntactic classes, but need not be. Constructions range from lexical constructions
(WOMAN_1, WOMAN_2) that are fully lexicalized, to partially lexicalized constructions (IN.COLOR), all
the way to constructions with little or no phonological specification (PAS_SVO). Double circle SemFrame
nodes mark head nodes.
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(1) *“John filled water in the glass”
(2°) “John filled the glass with water”

Cxnl accepts “pour” but not “fill” in its verb slot, while the reverse is true for Cxn2. Both share the same
syntactic class, and are very close in term of general conceptual/world knowledge. But they differ in the fact
that “pour” only specifies the path to the object and not the change of state of the object, “fill” only specifies
the change of state, not the manner by which it is achieved. This difference between the two concepts “pour”
and “fill” reveals the difference in semantic constraints associated to the V slot in Cxnl and Cxn2. Some
verbs can satisfy equally the constraints of both constructions (cf. “sprinkle”).

A slot in a construction vary in its sensitivity to meaning, stipulating “grammatical semantics” constraints
that differ from the full-fledge multi-facetted world knowledge associated with a lexical item: grammatical
semantics usually represent a much “lighter” or “bleached” version of world-knowledge, keeping only the lin-
guistically relevant features (which in some case can end up being so bleached that they can be simply summa-
rized by a “syntactic class”). In the case of the ditransitive construction Subject Verb Objectl Object2 (e.g.
“Bill kicked Bob the ball”), the construction is sensitive to the specific contrast between (1) verbs of instanta-
neous causation of ballistic motion which are acceptable (“I kicked/tossed/rolled /bounced him the ball”) and
(2) the verbs of continuous causation of accompanied motion that are not (*I carried/hauled/lifted/dragged
him the ball’). The construction however, is not sensitive to the many world-knowledge differences that exist
between the verbs within each group.

Figure 2.11 presents a few construction examples illustrating those features. Each construction is assigned
a class. If for simplicity the classes used here are similar to the classic syntactic classes, there is no a priori
constraint on the number or nature of those classes. Following the main tenets of cognitive linguistics focusing
of language in use, linguistic knowledge is not divided into components (phonology, syntax, semantics, and
pragmatics), rather any construction can potentially cut across all those strata. For this reason, constructions
ran the gamut from lexical constructions (e.g. WOMAN_1, WOMAN_2) all the way to argument structure
constructions (e.g. PAS_SVO).

The meaning pole of each construction (SemFrame) is represented using the SemRep format with ad-
ditional features. A head node indicates the semantic head of a construction. A focus feature F can be
associated with a node to encode the information structure features carried by the construction’s meaning
pole (cf. PAS_SVO).

The form pole of constructions (SynForm) is limited to representing sequences of phonological forms and
slots. Slots play a key role as variables that need to be filled by the form of another cooperating construction.
Slots also express constraints on the constructions that can be used as filler (set of admissible construction
classes).

The mapping between meaning and form is defined through symbolic links (SymLinks, dashed lines)
linking semantic to form elements, denoting that a specific form element symbolizes a given part of the
meaning. In the current format, symbolic links only appear between a node and a form element, any semantic
element that is not associated with a symbolic link is assumed to be de facto symbolized by the construction
although the nature of this symbolization is not stipulated. Semantic relations (SemFrame edges) are always
symbolically represented in the form (e.g. as sequential relations). Similarly some semantic nodes can appear
in the meaning pole that are not symbolically linked to any form element (c.f. IN.COLOR construction).

Preference and Group features can be added to the constructions. Preference captures usage preferences
(e.g. defined from usage frequency) and during processing modulates the initial activation value of construc-
tion schema instances. Group defines construction subsets (e.g. lexical and grammatical constructions) that
can then be processed differently.

A grammar G is a set of constructions {Cxn;}. As a construction always includes a SemFrame which is
defined in terms of concepts, a construction, and by extension the whole grammar, is necessarily defined in
relation to a conceptual knowledge. The model does not impose a particular content for the grammar and
offers the option to write and test new grammars using simple json format.

A language schema or construction schema defines a functional unit of grammatical knowledge. The

construction schema is defined as a tuple
(Cxn,act®)

where Cixn is a construction as defined above, and act® € [0,1] is a scalar value used to define the initial
activation value when an instance of the schema is invoked.
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Although schema theory hypothesizes that long term memory (LTM) should be represented as a schema
network, TCG in its current version simply models Grammatical LTM as the set of all construction schemas
defined based on the grammar?.

Based on the state of the Semantic WM in which the message to be conveyed is incrementally built
(SemRep), construction schemas can be instantiated in Grammatical WM if the meaning-to-form mapping
they carry represents a possible candidate to participate in building the general translation of meaning
to form. In Grammatical WM, construction instances enter in cooperative computation (C2). Through
the process of competition and cooperation, they generate construction assemblages, each representing a
potential (possibly partial) self-organized program to translate the message (SemRep) into a phonological
form.

Each construction schema instances can be thought of as a “constructor”, which, in cooperation with
other, can flexibly build a program articulating meaning and form. The next sections details the process C2
processes.

2.5.2 Grammatical WM

At each time step, the state of the Grammatical WM is defined by the construction schema instances that
are currently active as well as by the cooperation and competition links (C2 links) that they have established
and, forming a competition-cooperation network (C2 network) that governs the cooperative computation.

Figure 2.12 illustrates key points of the cooperative computation process through a simplified example.
Construction instances compete and cooperate to form a winning construction instance assemblage that
will express the information contained in the SemRep shown at the center (since we show together the
construction instances and the SemRep, this combines the states of the Semantic and Grammatical WM
which we consider to form the Linguistic WM).

Lexical level construction instances attempt to map individual SemRep nodes onto linguistic forms with
competition taking where lexical synonymy appears. WOMAN_1 and WOMAN_2 compete as they proposes
two different hypotheses for the mapping of semantic content of the WOMAN node onto a lexeme. One
can note that WOMAN_1 is already winning the competition, possibly reflecting idiosyncratic preferences
or other usage-based differences between the two constructions.

Argument structure constructions instances express the whole SemRep frame of a transitive action per-
formed by an agent onto a patient. Here again, competition takes place between the SVO representing
the active voice transitive construction, and PAS_SVO representing the passive voice transitive construction.
The two compete as they overlap on the SemRep edges and therefore represent different ways of linguistically
expressing the semantic relations.

Through their open variable in their SynForm (SLOTS), SVO and PAS_SVO are also built on top of the
lexical constructions with which they form cooperative links. The figure shows that the PAS_SVO instance’s
activation is higher than that of the SVO instance, resulting from the fact that MAN node in the SemRep has
a higher activation than WOMAN node which favors its position as FOCUS, as stipulated by the information
structure of the PAS_SVO SemFrame (but not by that of SVO.)

Construction Schema Instantiation

As shown in Figure 2.2 the Grammatical LTM consists of a network of construction schemas. At each time
step, the state of the Semantic WM can be updated, following the incremental process of building the semantic
representation (SemRep). When new SemRep nodes or edges (i.e. conceptual schema instances) are invoked
in Semantic WM, constructions whose SemFrame semantically match (SemMatch) a SemRep subgraph that
contains those new elements are invoked as instances in Grammatical WM (see ch. 4, sec. 4.4.4). A semantic
match between a SemRep subgraph and a construction schema SemFrame indicates that the construction
expresses in its form, at least in part, the semantic content of this subgraph and is therefore a candidate
hypothesis for participating in the mapping of the SemRep onto a linguistic form in Grammatical WM (see
fig. 2.12, SVO and PAS_SVO have been invoked as their SemFrames are a semantic match with the SemRep.)

4Future work will need to explore the possibility of using a dynamic network allowing for cross-priming effects between
construction schemas. But see (Wellens and Steels, 2011)
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Figure 2.12: Example of cooperative computation (C2) in Linguistic WM (Semantic WM + Grammatical
WM). The SemRep is shown at the center and corresponds to the state of the Semantic WM. The con-
structions are shown forming a cooperation (green) and competition (red) network which corresponds to
the state of the Grammatical WM (C2 network). Taken together, Semantic and Grammatical WM form a
Linguistic WM. The dashed lines linking constructions’ SemFrames to SemRep nodes represent the portion
of the SemRep that each construction covers and expresses (partially) in its SynForm. They correspond to
cross WM cooperation links. Each construction is shown with an activation value on the top-right corner.
Competition takes place between lexical constructions: WOMAN_1 and WOMAN _2 compete as synonymous
lexical constructions, with WOMAN_1 winning. Competition also takes place at the more abstract level of
argument structure/voice: PAS_SVO and SVO compete as they both build on top of the same portion of
the SemRep but express the agent-patient semantic roles in different ways in their SynForm (SVO places
the agent as subject while PAS_SVO places the patient as subject). PAS_SVO is winning reflecting the fact

that it stipulates a patient focus and that the patient MAN as a higher activation that the agent WOMAN.
(See Ch. 4, fig. 4.5 for version of this figure as output of SALVIA computation.)

58



Cooperative Computation: Building the Competition-Cooperation Network

The goal of the Grammatical WM consists in incrementally building mappings to express the semantic content
of the SemRep (itself built incrementally) in a linguistic form. Construction schemas that correspond to
relevant meaning-form mapping hypotheses are invoked in Grammatical WM (see above) where they enter
in cooperative computation (C2).

Each construction instance carries an activation value, whose initial value is modulated by the preference
value stored in the schema, representing the idiosyncratic usage preferences of the speaker (to which can
be added a factor reflecting the quality of the semantic match). They organize into a C2 network, whose
dynamics defines at each time step the values of the instances activation values. If a construction instances
activation value falls below a given threshold, the instance is pruned out of the Grammatical WM. The C2
network is therefore intermittently reshaped following either the invocation of new constructions instances
or the pruning of construction instances that “lost” the competitions in which they were involved.

C2 links are built based on the “Match” operation (for details see ch. 4, sec. 4.4.5). Two instances that
do not overlap in their coverage of the SemRep do not form any C2 link. Informally, if two instances overlap
in their SemRep coverage, one of the constructions (child) needs to provide a SynForm that can (partially)
fill in the missing form information of the other construction (parent). The core constraints are that the
feature of the child construction needs to match both the syntactic constraints and semantic constraints
carried by or linked to the slot of the parent construction. Going back to fig. 2.12, the MAN construction
instance’s meaning-form mapping overlaps with that of the SVO construction instance since they both cover
the MAN patient node of the SemRep. MAN can enter in cooperation with SVO (green link) through the
first slot of the latter. Indeed, MAN is of class (N) as required by the slot, and the head node of the MAN
construction (its “semantic class”), fits with the semantics of node symbolically linked to the first slot in
SVO for the simple inclusion requirement (MAN C ENTITY) (the same analysis holds for the cooperation
between MAN construction instance and PAS_SVO construction instance).

Each construction instance active in Grammatical WM carries a mapping hypothesis of a portion of
the current semantic representation onto a linguistic form. Cooperation emerges between two constructions
whose mapping can be composed to generate a new mapping covering a larger portion of the semantic
content, or refining the mapping. Competition, on the other hand, is triggered when two constructions
represent incompatible mapping hypotheses. (cf. WOMAN_1 and WOMAN_2, or SVO and PAS_SVO in
fig. 2.12).

C2 links are created incrementally: each time a new construction instance is invoked it is matched against
the ones that are already active in the Grammatical WM (cf. fig. 2.16).

Cooperative Computation: Dynamics

The construction schema instances invoked in Grammatical as relevant meaning-form mapping hypotheses
(see sec. 2.5.2) enter in cooperative competition (see sec. 2.5.2). At each time step, the Grammatical WM
contains a network of interacting construction instances consisting of cooperation and competition links (C2
network). The activation levels of construction instances are updated following a leaky-integrator dynamics.

The principles that govern the dynamics of the instances follows directly in the footsteps of most of the
other cognitive modeling efforts based on hybrid dynamic-symbolic systems (McClelland, 1993) mentioned
in Introduction (See ch. 4, sec. C.1.3 for details).

2.5.3 From Construction Assemblages to Utterances: Phonological WM and
Utterance Production

Through the process of competition and cooperation, construction instances generate construction assem-
blages, each representing a potential (possibly partial) self-organized program to translate the message
(SemRep) into form content.

At each time step, a constructions assemblage corresponds to a network of cooperating construction
instances. The hypothetical meaning-to-form mapping it represents carries its own activation value sderived
from that of the assemblage component instances and that reflects its relevance as a meaning-form mapping
solution.
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Looking back at Fig. 2.12 it appears that lexical constructions WOMAN_1 and WOMAN_2 compete
as synonymous lexical constructions, with WOMAN_1 winning. At the more abstract level of argument
structure/voice: PAS_SVO and SVO compete as they both build on top of the same portion of the SemRep
but express the agent-patient semantic roles in different ways in their SynForm. PAS_SVO is winning due
its patient focus that is a better semantic match for the high activation patient MAN. Assuming that
WOMAN_2 loses the competition and is pruned out, we are left with two construction instance assemblages,
corresponding respectively to the use of active and passive voice. If forced to choose, the system employs a
winner-take-all strategy and the passive would win since PAS_SVO has a higher activation value that SVO,
yielding an assemblage with a higher activation.

When the system is required to generate an utterance, the winner assemblage is selected, the constructions
instances are unified, and the form of the resulting meaning-form mapping is sent to the Phonological WM as
the basis for generating the utterance. Constructions instances continuously receive external activation from
the concept schema instances of the SemRep they cover. Such external activation, across WMs, injects, in
the temporal dynamics of the activation values of the construction instances information about the relevance
of the semantic content they map onto form content. When an assemblage is selected and used to generate
a meaning-form mapping, all the elements of the SemRep it has expressed onto form content are mark as
expressed and stop sending activation to the construction instances, reflecting the fact that they do not need
to contribute anymore in the generation of utterance content. This ensures that the state of the grammatical
WM adapts to the state of the message (i.e. what parts have been expressed, what parts remained to be
mapped onto utterances).

Informally, going from a set of cooperating constructions (construction assemblage) to a sequence of
phonological forms involves unifying the SynForms of the cooperating constructions by replacing, where a
cooperation link exist, the slot of a parent construction by the SynForm of the child construction it is linked
to. For a detailed account of the process refer to ch. 4.

The Phonological WM plays an important role as the system might be required, in order to continue the
incrementally production of utterances, to take into account the phonological content of previous utterances.

2.5.4 Linguistic WM: Hierarchy but no Tree

Fig. 2.13 gives an informal view of the state of the system, subsuming both Semantic and Grammatical
WM into a unique, multi-layered, Linguistic WM. It assumes that the competitions have been carried out
and that the losing construction instances have been pruned out (v.i.z WOMAN_2 and SVO). The bottom
layer corresponds to the Semantic WM with the SemRep state. On top of this layer, construction instances
are applied, forming a hierarchical structure that correspond to the final Grammatical WM state. Lexical
construction instances form the first layer of construction instances. From there more and more abstract
construction instances pile up. More abstract construction instances build upon and organize the content of
less abstract construction instances that in turn specify information requested by the more abstract instances.
The text associated with each instance corresponds to the utterance that would be produce, would the system
only read-out the WM content at this level.

The lexical construction instances express the content of the SemRep nodes, while the argument structure
construction maps onto the lexical constructions and bundles them into a single SynFrom. This hierarchical
view of the processes aligns with the design of VISIONS in which the Visual WM was composed of various
WM layers, each handling perceptual schemas of increasing scope and abstraction.

2.5.5 Good Enough Production of Utterances: Speaker and Task Relevant Pa-
rameters

Focusing on language use, to fully understand the nature of the vision-language interactions requires em-
bracing production performance as it is rather than sterilizing it, discounting the utterances that are not
well-form and fluently generated, or limiting the production to predefined sentence templates (e.g. single
active clause, conjoined subject NPs, etc ). Much work on language comprehension has by now outlined the
necessity to understand the comprehension process as solving a satisficing problem (Simon, 1972) finding
an interpretation for an utterance that is good-enough to solve the problem at hand while satisfying the
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‘man is punch -ed by young woman’

‘young woman’

ADJ_MOD

Figure 2.13: The weakly coupled Semantic and Grammatical WM taken together can be considered as
forming Linguistic WM. This figures informally summarized what could be an end-state of the situation
described in fig. 2.16. The lexical construction instances express the content of the SemRep nodes, while
the argument structure construction maps onto the lexical constructions and bundles them into a single
SynFrom. This hierarchical view of the processes aligns with the design of VISIONS in which the Visual WM
was composed of various WM layers, each handling perceptual schemas of increasing scope and abstraction.
Dashed lines indicate cross-WM activation links through which the concept instances of the SemRep can
impact the activation of the construction instances that map them onto meaning (for simplicity, links between
concept relation instances and construction instances are not shown. Above each construction instance, the
text correspond to the utterance that would be generated by the construction assemblage that would select
this instance as the top instance.
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constraints defined by the task as well as by the system itself. To this “good-enough comprehension” prin-
ciple to comprehension (Ferreira and Patson, 2007; Ferreira, 2003; Christianson et al., 2001; Patson et al.,
2009) we propose that should be added a “good-enough production” principle: the output of the language
production system corresponds to a good-enough solution to a given task. Whether or not fluency and
well-formedness are the overarching constraints depends on the task at hand. SALVIA accounts for the fact
that the processes can function at various regimes and can be impacted by task-related requirements.

Parameters defines the characteristics of the dynamics taking place both within and between WMs. In
doing so, the core temporal behavior of the model with respect to incrementally received inputs is set.

The main parameters of the system are those that define the dynamics of each WM (in particular their
relative characteristic times). They set the core temporal behavior of the model with respect to incrementally
received inputs is set.

We propose that those be supplemented by another parameter reflecting constraints on the Grammati-
calWM dynamics. To simulate the impact of (cognitive) time pressure on utterance production, ¢iime_pressure
constrains the model to attempt the production of an utterance at each A7 = tiime pressure intervals. Cru-
cially, the system has to do so whether or not all the required semantic information has been gathered,
and also whether or not the state of the Grammatical WM has converged to a unique solution (no more
competition).

2.6 Language-Vision Interactions: Visual Guidance vs. Verbal
Guidance

Attentional parsing of the visual scene is piloted bottom-up by the interaction of the bottom-up saliency
values associated with the subscenes and the successive attentional windows (focus areas, which can restrict
the set of subscenes that compete in the bottom-up attentional process). A key aspect of the Subscene
Recognition system lies in the possibility to orient visual attention based on top-down requests received from
Visual WM.

As mentioned above, the perceptual schemas instances active in VisualWM function also as pointers to
the area they (partially) interpret. If more information is needed regarding a given perceptual instance,
the Visual WM can send a request to the Subscene Recognition schema to change its current focus toward
the area covered by the instance in question, triggering the retrieval of all the information that is spatially
located within this area.

The interactions that take place between bottom-up and top-down signals orienting visual attention are
informally illustrated by fig. 2.14. As shown on the left panel, eye-position and focus-area (spatial attention
window) can be oriented by bottom-up by saliency characteristics of the scene (here towards the center of
the scene where the action takes place) and top-down signals. This defines the area of the scene currently
under attentional focus.

The perceptual schemas associated with this area, forming a subscene, are instantiated in Visual WM. In
the case depicted, two entity perceptual schemas are instantiated, MAN and HUMAN, the latter reflecting
the lack of information regarding the perceptual entity it denotes, one action schema (PUNCH) that links
the two participants (represented as edges). Such high level perceptual schema instances are used as stand-
ins for the highest level of perceptual representation achieved in a model such as VISIONS. It assumes
that many more perceptual schemas have been put to work in order to be able to generate such perceptual
representation, while also making the hypothesis that only the relevant perceptual schemas will be used to
support the creation of the semantic content.

Those perceptual instances active in Visual WM are then conceptualized to generate the SemRep, state of
the Semantic WM. SALVIA does not tackle the conceptualization process per se and therefore simply assumes
many-to-one mapping between perceptual schemas and concept schemas (e.g. many types of perceptual
relations denoting an actor here PUNCH will be mapped onto the concept schema PUNCH and the
conceptual relation of agent (agt) and patient (pt)). It is important to note that, as in VISIONS, the
invocation of schemas instances in semantic WM on the basis of the content of the Visual WM results in
cross-WM links between the instances.

As shown in Fig.2.14, those links can serve as back pointers allowing the passing of top-down request
to the visuo-attentional system from the Semantic WM. In this case, in order to request more information
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Figure 2.14: Interaction between visual-attentional processes and language production. (Left) Eye-position
and Focus-area defining the current attention window result from bottom-up saliency signals. Through local
saccades, the visual sub-scene associated with this scene region is extracted and the corresponding perceptual
schemas are instantiated, updating the state of the Visual WM. Following their conceptualization, they
update the state of the Semantic WM (SemRep), expanding the content of message to be verbally conveyed.
In this case we assume that the WMs were initially empty and therefore the final semantic representation
correspond to the sub-scene perceptual information that has been extracted in this bottom-up process (a man
is punched by an unknown human). Top-down signals can emanate from the Semantic WM or the Visual
WM to orient the attention window toward an area of the scene where information relevant to the current
process can be found. Verbal guidance results from such top-down attentional requests. As the system
has already committed to the utterance “man is punched by” but is lacking specific semantic information
about the agent of the action (only specified as an HUMAN), a top-down signal can be sent that will orient
the visual attention towards the area of the scene that is linked to the HUMAN concept instance (through
the intermediary of the associated perceptual instance). (Right) The attention focus-area is now directed
at the HUMAN (PUNCHER). This allows the SemRep to be updated on the basis of novel perceptual
information (HUMAN is specified to be a WOMAN, who in addition is YOUNG). Filling in the missing
semantic information allows the system to continue the utterance smoothly using the PASSIVE pattern it
had chosen. 63
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Figure 2.15: Generating a flexible grammatical structure mapping on top of an incrementally built seman-
tic representation (SemRep). (Left) The SemRep only consists of a MAN node covered by a single MAN
construction instance. (Right) Semantic content has been added to the previous SemRep. The MAN con-
struction remains while other construction instances have been invoked, adapting the grammatical structure
to the new SemRep state. fig. 2.12 presents yet a following state in which the agent HUMAN has been
specified as WOMAN.
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Figure 2.16: Example of state that can follow the one described in Fig. 2.12 following novel attentionally
retrieved perceptual information. Additional semantic information is added to the WOMAN concept instance
node: a property (YOUNG) that modifies WOMAN. On the other hand, the WOMAN_2 construction
instance has now lost the competition against WOMAN_1 and has been pruned out of the Grammatical
WM. The addition of the new semantic content resulted in incremental invocation through SemMatch of
both the lexical YOUNG construction instance and of the ADJ_MOD construction instance, following by
the creation of the new C2 links between those new constructions instances and the existing ones through
Match. The C2 network changes naturally followed the incremental changes that took place at the SemRep
level.

regarding the nature of the agent HUMAN, the Semantic WM can orient the visual attention TD towards
the relevant region of the scene through the intermediary of the perceptual schema instance it is linked to,
instance that itself contains information regarding the spatial area of the scene that it covers as a perceptual
hypothesis. This allows the combination of both bottom-up and top-down attentional cues in the process of
visual parsing a visual scene.

Fig. 2.16 therefore represents the states of the Semantic and Grammatical WM that follows the one
described in fig. 2.12. The interplay of bottom-up and top-down visuo-attentional signals resulted in the
updated of those states, allowing for a smooth continuation of the utterance.

Given a SemRep, construction instances enter in cooperative computation in Grammatical WM until
a winning construction assemblage is chosen as the basis to generate the meaning-form mapping that will
result in a description utterance.

Following a Winner-Take-ALL (WTA) and a ReadOut process that combines the construction instances
SynForms in order to generate a phonological sequence in Phonological WM, the system commits to uttering
“man is kicked by”. However, semantic information regarding the nature of the agent is missing. This
triggers a Top-Down signal requesting information about the HUMAN SemRep node that for now represent
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the patient. This type of utterance-driven TD attention orientation represents a form of “verbal guidance”
which, in scene description generation, co-occurs with the BU driven “perceptual guidance”, as the driving
force underlying the relations between saccade and word sequences.

Note that the assumption is that more information about a given perceptual hypothesis can be found in
the vicinity of the area it interprets. This is obviously a strong simplification since in many cases, relevant
extra-information related to a given perceptual schema might not be found in spatial proximity (e.g. getting
the information about what a person looking at requires much more complex spatial reasoning).

2.7 Language Production Schema System: Modeling Language
Use

2.7.1 Incrementality at its Core

Fig. 2.16 presents a conceptual view of a continuation of the states of both the Semantic and Grammatical
WM, compared to the state previously described in fig. 2.12, once the visuo-attentional system, triggered
by verbal guidance, led to the perceptual and from there semantic information regarding the agent to
supplement the SemRep. In doing so, it triggered the instantiation of new construction schemas (YOUNG
and ADJ_MOD, and GIRL).

It is worth noting how the GIRL construction instance enters in competition with a whole noun phrase
mapping the same conceptual content onto “young woman”

Fig. 2.17 presents a possible final assemblage A following the C2 process in Grammatical WM as described
in figs 2.15, 2.12, and 2.16.

All the competitions have yielded their results, and only cooperation links remains. The system is not
guaranteed to converge, or might not have converged when the system is required to make a decision and start
an utterance in which case competition are terminated with the winning assemblage being selected. Each
cooperation link can be seen as a unification link between two construction instances. Figure 2.18 illustrate
some of the resulting stages of performing all the unifications, yielding ultimately a single construction
instance eq_inst 4 that contains the sum of all the information carried by the construction instances in the
assemblage®.

Generating a form from a construction instance assemblage rests on the possibility to unify the cooper-
ating construction instances. Given the state reached in fig. 2.17, fig. 2.18 provides an informal example of
the unification process at play.

Ch. 4 presents in detail the TCG schema theoretic model of language production.

2.7.2 Seeing-for-Saying

The previous section on “Good-Enough Production” already presented the way the SALVIA system of
language production incorporates task and speaker related parameters. Pressure to produce can be applied
to the system reflecting situations in which, for example, a person is producing language extemporaneously.
Other speaker related parameters can be incorporated as factors defining the criteria used to define the
scores of an assemblage (favoring utterance continuity, seeking brevity and semantically compact utterances,
etc). Those can also be defined through constraints imposed on WM parameters as well as on constraints
imposed on them (limiting for example the complexity of the structures they can hold) (cf ch. 4)

The production system does not seek to produce well formed sentences but utterances that fulfill the
communicative goal of the system given the constraints it faces and inherent preferences.

These constraints imposed on the language processes are critical to understand and simulate the interac-
tions between language and vision. Without them, the system would be essentially in an idealized situation
of simulated competence instead of performance, situation artificially created that abstract away precisely
the effect that SALVIA is interested in modeling: those emerging from situated language use.

5PAS_SVO serves as a much simplified shortcut for a complex process that should involve at least argument-structure
(transitive) and voice (passive) constructions.
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Figure 2.17: Possible winning assemblage on which the C2 process in Grammatical WM could converge
(or competitions could be prematurely terminated using winter-take-all if the system is required to make
a choice before convergence). In this example, the state of the Grammatical WM described in fig. 2.16
yielded a winning assemblage in which the PAS_SVO construction instance won the competition against
SVO resulting in the latter being pruned out of the WM. In this assemblage, each construction instance
contribute to mapping a part of the SemRep onto a linguistic form. The 4 lexical construction instances
(MAN, PUNCH, YOUNG, WOMAN) map nodes onto lexical items. The ADJ_MOD construction instance
translates the ‘mod’ semantic relation into sequential constraints on form (‘adj noun’ pattern). The PAS_SVO
construction instance builds on top of all those previous instances and translates the agent-action-patient
frame into both sequential form order and required function words. How those construction instances combine
their hypotheses to generate a linguistic form is illustrated in fig. 2.18.
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Figure 2.18: Construction instances unification example. Two stages of the unification process generate the
equivalent construction instance for the assemblage A shown in fig. 2.17. (Top) Stage following the unification
of all the lexical construction instances with the more abstract constructions they cooperate with. UCXN_1
results from the unification of PAS_SVO with both MAN and PUNCH instances. The subject and verb slot
are lexicalized but the adjunct form is missing. UCXN_2 results from the unification of ADJ_MOD both with
YOUNG and WOMAN instances. It has a fully lexicalized form (young woman’). (Bottom) Stage following
the unification of UCXN_1 and UCXN_2 resulting in UCXN_3 = eq_inst4. All the construction instances
forming the assemblage have been unified. The construction instance equivalent to the assemblage maps the
entire SemRep onto a fully lexicalized form that can serve as an utterance output. Note: This figure shows
an example of unification stages. However, to generate the final equivalent instance, the order of unification
is irrelevant.
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Those are the good-enough production constraints that result in the language production system inter-
acting top-down with the attention system in order to optimize the visual parsing of the scene with respect
to the state of the unfolding utterance.

Limitations imposed on the language processes in turn constrain and shape the dynamics of interactions
between language and vision.

2.8 Preliminary Conclusions

This chapter outlined a novel computational cognitive model of language production in the context of the de-
scription of visual scene. The Schema Architecture Language-Vision InterAction cognitive model (SALVIA)
provides an implementation that takes into consideration lessons derived from cognitive modeling theories,
from conceptual theories of language production, from the known theories of visual attention, as well as from
recent advances in cognitive linguistics and in particular in computational construction grammar.

The next chapter puts the model to work and provides simulations results that both validate its validity
as cognitive model of language production (of visual scene description and of language in general), but also
show how SALVIA can simulate and provide a novel computational interpretation of key psycholinguistic
results.

Chapter 4 is then more specifically dedicated to the presentation in details of Template Construction
Grammar as a computational construction grammar model of language production.
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Chapter 3

From Gaze Patterns to Utterances:
Simulating the Dynamics of Visual
Scene Description

“It seems perfectly reasonable to think that much, if not all, that is universal in human language is attributable to
underlying cognitive structures and processes. Perceptual and linguistic sequences must, at some level, share a common
representational (semantic) system and a common set of organizational (syntactic) rules, cognitive in nature.”

Osgood

Where do sentences come from?

3.1 Introduction

This chapter presents a series of simulation results derived from the SALVIA model of language production.
After having first provided computational counterpart to the conceptual examples used in ch. 2, showing in
the process how SALVIA can handle the production of more complex messages than the ones discussed so
far, the full model is used to simulate the process of scene description linking eye-movements and the verbal
production of utterance. With this in place, the last section turn to the simulations of key psycholinguistic
results and show how SALVIA offers an implementation supporting the analyses of Kuchinsky 2009. It shows
that the view of a general flow of information from the visual processes to the grammatical processes with
the saccadic sequence driving the linguistic sequence (visual guidance), only holds in certain experimental
conditions. Other conditions reveal a feedback effect of the linguistic processes onto the visuo-attentional
dynamics: having committed to a grammatical structure for an ongoing utterance, but lacking the necessary
semantic information to fill in all the required role, saccades can be triggered towards the parts of the visual
scene likely to contain the missing information (verbal guidance).

3.2 Input-Outputs

3.2.1 Inputs

Semantic Inputs

The visual system of SALVIA can be bypassed by directly defining as input an incremental sequence of
semantic information. As the model runs, the semantic information is retrieved at the pre-defined time, and
the SemRep state of the Semantic WM is updated accordingly.
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Figure 3.1: . A SemRep incremental input. This type of input bypasses the scene recognition system and the
visual WM, directly providing to the system the incremental semantic content it should process as a basis to
generate utterances (simulating only the incrementality inherent to the gathering of semantic content during
visual scene parsing). (Left): The inputs are defined as simple propositions, each defining either concepts
or relations. A value stipulate the rate at which the propositions should be interpreted and used to update
the state of the SemanticWM. (Right) State of the SemanticWM updated each time new semantic content
is received as input. The SemRep is built incrementally (at each time step, novel semantic content is shown
is highlighted).

SALVIA can be run by providing directly an incremental semantic input to the SemanticWM. This allows
to bypass the visuo-attentional system while retaining the key feature of the dynamic, incremental nature
of the process of building the message to be linguistically conveyed. Figure 3.1 illustrates such an input (for
a more in depth description, refer to (Barres, 2017)). The detail regarding how the incremental semantic
input are defined is provided in Appendix C, Sec. C.1.5.

Scenes

SALVIA can take as input visual scenes. Such scenes are defined as hierachical network of subscenes each
containing manually defined perceptual schemas associated with a spatial regions of the input (see also
fig. 2.10). Subscenes and perceptual instances are directly associated with image areas and all are associated
with a bottom-up saliency value

As the model runs, based on the state of the attention process (location, focus scale), the perceptual
schemas that are under attentional focus are instantiated in the Visual WM, incrementally updating its
state.

The example given here, compared to the one showed in fig. 2.10, illustrates the type of visual scenes
used in psycholinguistic studies to analyze the relations between attentional and linguistic processes.

Those artificial scenes could be term “minimal scenes”. They contain the bare minimum amount of
perceptual content to create a scene that is not merely a collection of objects. Such minimal scenes, if
they are still useful for modeling purposes, limit greatly the amount of processing require to build a scene
representation. Compare to a natural scene that can be conceptualize in a very large amount of ways, such
scenes are very limited in the possibility of conceptualization they offer: all the entity and character are
stereotypes and they only contain one main event. In many ways, they can be seen as pre-conceptualized
scenes: the viewer is already given a conceptualized view of what a real scene would be. This justifies in
part why in the present model, the conceptualization sub-system was kept simple. For such a minimal scene,
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Figure 3.2: Example of input scene. Scene taken from (Knoeferle and Crocker, 2006). This simple input was
generated using the SceneBuilder (cf. Appendix B, sec. B.5). Arrows stand for perceptual relation schema
instances while black boxes denote ENTITY, ACTION, or PROPERTY perceptual schema instances and
the regions of the visual scene they cover. Red boxes denote subscenes, and the region of the visual scene
they cover. Each element is associated with a saliency value.

the incrementally built scene representation (SceneRep) can be seen as very close to the SemRep that will
conceptually express the scene content.

This justifies why, in many cases, when the spatial aspect of the regions covered by the perceptual schema
instances does not play an important role, the scene representation will be simplified to bypass the actual
spatial linkages to only keep the structural relations between subscenes (see below).

Similarly, it justifies why, in the case when the feedback from language processes onto visual atten-
tion are not considered, the incrementally received conceptualized perceptual representation, resulting from
attentional parsing, can be simulated by a direct incremental SemRep input (see above).

Since this format is costly to generate and run, we will generally rely on a version of the scene format
that abstract away from spatial anchoring while keeping the requirement that scenes are represented as
hierarchical sub-scene structure, particularly adequate for the “minimal scenes” used in psycholinguistics
experiments.

Scene inputs can bypass the perceptual schemas and be defined directly in terms of the semantic content
the perception of each subscene will instantiate in SemanticWM. The input is then given in the same format
as the one used for SemRep input that was described above. However, instead of stipulating the order in
which the semantic content should be retrieved, a scene structure is stipulated. The scene structure is defined
as a hierarchy of subscenes. Figure 3.3 provides an informal illustration of such input formats, using the
case of a scene used by Kuchinsky. Here the semantic contents have been pre-assigned to subscenes (bypass
conceptualization). The semantic information associated with a subscene is retrieved when it becomes the
attentional focus (BU or TD directed).

Perceiving the scene is therefore based both on the bottom-up saliency of each subscenes but also on the
how the subscenes are hypothesized to structurally organize into a complex cognitive scene representaiton.
Cueing a subscene as well as top-down requests from the language system can directly focus the attention
on a sub-part of the scene structure.
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Figure 3.3: Tllustration of a scene input. (Left) Subscenes and the semantic content that is retrieved when
they fall in attentional focus. The organization from top to bottom reflects the hypothesized hierarchy
between the subscenes in terms of how easily they are built (easiest at the top). In this case, the general and
rather abstract event subscene is hypothesized to be most easily retrieved from the input (in absence of other
factors such as top-down requests). Conversely, the subscenes perceptually defining the entities participating
in the action-based event are assumed to be, relatively, harder to build. (Example of a scene with Easy event,
Hard objects) (Right) The image regions they are linked to. (scene adapted from (Kuchinsky, 2009))

3.2.2 Outputs

Each subsystem that is part of the SALVIA model can be probed and generate outputs. With respect to
language generation, the two main outputs are the utterance generated and the scene parse trajectory (in
the case in which the scene input is provided).

Utterances are the first output of the model. The utterances generated by the model are defined as time
stamped sequences of words (and occasionally bound morphemes).

Fixation & Focus If a full scene is provided, the scene parse trajectory consists in a time stamped series
of gaze positions and focus attention window sizes (see fig. 3.4 for a simple example.)
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Figure 3.4: Example of saccade output (focus attention window not shown).

If a simplified scene input is used, the scene parse simply consists in the time stamped order in which the
subscenes are attended to alongside the attention window defined in terms of restrictions of the attention
within the scene structure graph.

3.3 Parameter Space

On the basis of Schema Theory, each WM in the system is associated with its own set of parameters.
However, since the schema instances in Visual WM, Semantic WM, and Phonological WM do not form
cooperation or competition links, their dynamics is much simpler to express and only depends on external
inputs (cf. Appendix B, sec. B.1 for more details.)

Parameter Space Problem in a Hybrid System The question of the parameter space on which the
SALVIA model can be instantiated is of course of great importance as one of the key question the model
has to address is whether or not one can link different areas of the parameter space with different types
of observed linguistic behaviors. Hybrid systems such as the one presented here, because they combine
analogical and symbolic representations in their operationalization, incorporate a challenge that is harder to
directly quantify, namely the accuracy of the symbolic content incorporated in the model. In the case of the
SALVIA model, the perceptual, semantic and grammatical knowledge are not learned but are given as input
to the model. Clearly such knowledge contents cannot be analyzed in terms of the parameter space they span
and remains in the realm of knowledge design until such time that the model will be extended to incorporate
learning at all the levels that include symbolic representations. For this reason, it is crucial to understand
that the present model exists as bridge between the conceptual work of experimentalists (including linguists
that have outlined the existence of various forms of linguistic knowledge) and modelers whose role is to start
putting those concepts to work.
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3.4 From Incremental Semantic Representation to Utterances

3.4.1 Sanity Check

The first line of test for the model consisted in ensuring its capacity to properly generate linguistic outputs
for a given semantic input in the absence of any constraints (competence test). This was carried by running
the model on a series of SemRep inputs in which the semantic input was provided all at once or in the
equivalent situation of Time Pressure >> Last input received time >> Tau_GramWM.

For each of the input SemReps, that ranged in complexity from single entity (and modifiers), to single
event, all the way to multiple events, was attached a set of ground truth sentences. Testing the model could
therefore be compared to a translation testing. BLEU score was used and the model was able to score
100% on bigram BLEU score. It should be noted that this is a fairly lenient benchmark due to the inherent
limitation of the TCG grammar used and of the BLEU score itself. This result should only be taken as a
sanity check indicating that the model is able, from a pure competence perspective, to deliver what it was
designed to deliver.

3.4.2 From Conceptual to Computational Example

The model received as input the same simple succession of semantic states as the one used in the conceptual
examples used in this paper. First, no time pressure is applied.

The succession of states of the LinguisticWM (SemanticWM + Grammatical WM) is given in Appendix B,
sec. B.4.1

The model outputs: [START](602)man is punch -ed by girl[END] (time of utterance is indicated in
parenthesis).

The temporal profiles of the construction instances’ activation values are shown in Figure 3.5.

The dashed red line indicates the initial activation values of instantiated constructions (here there is
no modulation of initial activation so all construction instances start with the same activation value). The
MAN lexical construction is the first to be invoked in Grammatical WM. Its activity builds up, driven by the
activation it receives from the SemRep subgraph it maps onto. As the information about the action event
is received, the PUNCH lexical construction gets activated while competition starts between the SVO and
PAS_SVO construction instance. Just before t=200.0, PAS_SVO emerges as a winner.

When the semantic information about the woman agent is received, the two synonymous WOMAN lexical
constructions are invoked and enter in competition. Meanwhile, as cooperation builds up between the lexical
constructions and the PAS_SVO construction, the latter gets an extra boost of activation and emerges as
the structure that organizes the grammatical mapping. At around t=400, the symmetry between WOMAN
instances breaks. The bottom dashed line indicates the value under which instances are pruned out of
Grammatical WM. At around t=600, both SVO and the loser WOMAN construction have been pruned.
There is no more competition in the network.

A single assemblage remains. It is used to map the full SemRep onto the output utterance mentioned
above. Following this step, the construction instances stop receiving activation from the SemRep instances
that have been expressed (all of them in the present case) and therefore their activities start to decay;
they will all eventually be pruned. However, if new semantic information were provided before the pruning
occurs, i.e. during a time window proportional to the time characteristics of the GrammaticalWM, the
old grammatical structures would still be available to cooperate with the new structures, influencing the
continuity between utterances.

To illustrate this point, the model was then run with time_pressure set at 200 (forcing the system to
attempt to produce an utterance every 200 steps).

It outputs: [START](208)man is punch -ed by (402) woman[END].

Here the system first produces a partial utterance at t=208. PAS_SVO construction wins as it enables
the language system to start expressing the semantic content, even though the information about the agent
is not yet available. The system then pauses. When the nature of the agent becomes available, the gram-
matical processes, piloted by the PAS_SVO instance, can smoothly incorporate the newly invoked lexical
constructions and generate a single word utterance at t=400 that finishes the passive structure.
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Figure 3.5: Construction instances activations for a simulation of language production based on the same
succession of SemanticWM sates as the one used as example in this paper. The bottom part of the fig-
ure indicates the state of the SemantiWM (semantic state update rate = 100). The new semantic con-
tent is highlighted.. The decay in activations that start at t=600 corresponds to the fact that the pro-
duction of the utterance “man is punch-ed by young woman” is triggered. (For a video see victorbar-
res.github.io/media/SALVIA _p/states.mp4)
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GRAMMATICAL_WM(P) construction instances dynamics
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Figure 3.6: Construction instances activations for a simulation of language production based on the in-
put described in sec. B.3, tab. B.6. Production required to start at t=600. (For a video see victorbar-
res.github.io/media/SALVIA _p_complex/inst_activity.avi)

3.4.3 Increasing the Complexity of the Message: Impact of Time Pressure

To illustrate the behavior of the model on a more complex incremental semantic input and under time
pressure, SALVIA was ran using the following input:

Fig 3.7 provides a snapshot of the (weakly interconnected) states of the Semantic and Grammatical
WM, referred to as Linguistic WM. Displaying those states becomes quickly a challenge, however, it is
worth noting that the model is able to provide seamless coordination between the the two WMs. In the
present case, competition remains in Grammatical WM (red links). The whole of the Grammatical WM
state however, covers the entirety of the SemRep and could therefore be used, if required, to generate a
meaning-form mapping and trigger the start an utterance.

The system is required to attempt to produce every 100 steps starting at t=600. The temporal profiles
of the construction instances’ activation values are shown in Figure 3.6. At t=601, SALVIA generates the
utterance “ball that is chased by”. It has not yet received the semantic information regarding the nature
of the agent of the chase action, but has already committed to the use of the passive voice (PAS_SVO)
construction. At t=712, SALVIA generates a smooth continuation for the preceding fragment of utterance
“dog is kick-ed by woman while”. SALVIA had received the information that DOG is the agent of CHASE.
The information about the KICK event and its participants (BALL, WOMAN) were already known but the
choice of initial utterance delayed the expression of the action and the agent. At this point information about
a concurrent event has already entered the SemRep and is captured by the conjunction “while”. Finally, at
t=893, the system has gathered the semantic information regarding the nature of the concurrent event and
once again smoothly continues the previous utterance by producing “boy laugh”.

The system is under time pressure to produce an output and therefore start producing utterances before
the entirety of the semantic content has been retrieved. The utterance output is shown in tab. 3.1. Note
that compared to the schedule of inputs shown in sec. B.3, tab. B.6, the two first utterances are generated
before the last semantic input is received that stipulates the intransitive action performed by the BOY.
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Figure 3.7: Snapshot of the state of Linguistic WM (Semantic and Grammatical WM) at t=520. Dashed
lines between working memories represent cross WM activation links through which, in the present case,
the Semantic WM instances can impact the activity values of the construction instances the invocation they
are responsible for. This state of the Linguistic WM correspond to the one preceding the utterance of the
utterance “lady kick ball that is chase-ed by dog” at t=601 (see tab. 3.1) (for video see victorbar-
res.github.io/media/SALVIA p_complex/states.mp4).

t | UTTER |
601 “ball that is chase-ed by”
712 | “dog is kick-ed by woman while”
934 “boy laugh”

Table 3.1: Utterances generated by SALVIA given the input described in sec. B.3, tab. B.6. Although the
system, under time pressure, can produce fragmentary utterances, this does not prevent the succession of
utterances to form a full well-formed sentence when taken together “ball that is chas-ed by dog is kick-ed
by woman while boy laugh”

(Refer to Appendix B, sec. B.4.2 for a more detailed view of the simulation run)

3.5 Scene Description: Interaction between Visual Attention and
Language Processes

3.5.1 SALVIA: States

During the description process, each WM in SALVIA holds its own state composed of the (C2 network) of
active schema instances currently relevant to the WM function. Fig 3.8 gives an example of those states at
a given time. In all the WM the relation schema instances are represented as arrows.

The Visual WM contains a set of active perceptual schema instances that carry not only information
regarding the perceptual meaning they hypothesize to hold, but also about the area of the scene that has
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led to its instantiation. It can therefore re-orient attention towards this area if necessary, functioning also
as a “deictic pointer”.

The state of the Semantic and Grammatical WM are directly reflecting the states that have been de-
scribed in the conceptual models. They respectively hold concept schema instances and construction schema
instances.

The phonological WM holds instances representing phonological /word-form content and their temporal
relations that is here limited to the 'next’ temporal relation (arrows) stipulating that one element should
directly succeeds another during utterance production.
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3.5.2 General Example: From Eye Movements to Utterance Production

The scene input used in this example is the same one as the one described in fig. 3.2.

Saccades
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Figure 3.9: Model’s saccades.
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Figure 3.10: View of the interactions between visual, semantic and grammatical WM at the three first time

points marking the updating of the at least one of the symbolic structure (C2 graph).
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Figure 3.11: View of the interactions between visual, semantic and grammatical WM right before production
is triggered (continued from fig. B.26

The model outputs starting at t=310 the utterances: “a ballerina splash a cellist ... there is a bag
...there is a tree ...there is a fencer”
(Refer to Appendix B, sec. B.4.3 for a more detailed view of the simulation run)

3.5.3 Saliency, Perceptual Guidance and Information Structure

The scene input used in these examples is the same one as the one described in fig. 3.2. However, the
subscenes are limited to those involved perceptually representing the SPLASH action.

Case: Agent Fixated First

In this case, for the input scene, the SS_.BALLERINA subscene containing the agent has saliency 1, while the
SS_CELLIST subscene containing the patient has saliency 0.8. This triggers a bottom-up saliency preference
towards inspecting the BALLERINA subscene first.
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Figure 3.12: Model’s saccades. The model inspect the BALLERINA subscene first, then the CELLIST and
finally the SPLASH_EVT subscene.

Fig. 3.13 displays the temporal activity levels of percept instances in Visual WM. The initial activation of
the schema instances reflect the saliency of the subscene the belong to. O14 BALLERINA is the first percept
schema instance to enter visual WM followed by O15_CELLIST with the later receiving a lower activation
value. Note that because of the leaky integrator nature of the dynamics, the difference in activation level
between agent and patient percept instances diminishes with time.
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Visual_WM dynamics
dyn: [tau:300, act_inf:0, L:1, k:10, x0:0.5], noise: [mean:0, std:1], C2: [coop:0, comp:0 ,prune:0.01, conf:0]
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Figure 3.13: Percept schema instance dynamics in visual WM.

Fig. 3.14 displays the temporal activity levels of concept instances in Semantic WM. Following the
timing in visual WM,the BALLERINA concept is instantiated first followed by the CELLIST concept.
Their initial activation values reflect the activation values of the percept schemas they conceptualize at
the time of instantiation. The difference in activation level between the BALLERINA and the CELLIST
concept instance implements the information structure level of the SemRep with a higher activation value
corresponding to a higher ”focus” value.

Semantic_WM dynamics
dyn: [tau:300, act_inf:0, L:1, k:10, x0:0.5], noise: [mean:0, std:0.2], C2: [coop:0, comp:0 ,prune:0.01, conf:0]
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Figure 3.14: Concept schema instance dynamics in semantic WM.
Fig. 3.15 displays the temporal activity levels of construction instances in Grammatical WM. The main

element to look at here are the two green line at the bottom of the graph. The top one represents the SVO
cxn instance while the bottom one represents the PAS_SVO cxn instance. In the grammar used for this
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experiment, both constructions have the same preference value and should therefore start with a similar
activation level. Th e difference in initial activation value results from the fact that the SemFrame of SVO
matches the SemRep better since it favors an Agent focus. This initial boost results in SVO instances staying
above PAS_SVO during processing until production is triggered at t = 300. Consequently, the model will
produce an utterance structured by the SVO cxn and therefore in active mode.

Grammatical_WM_P dynamics
dyn: [tau:100, act_inf:0, L:1, k:10, x0:0.5], noise: [mean:0, std:0.2], C2: [coop:1, comp:-1 ,prune:0.1, conf:0.7]
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Figure 3.15: Construction instances activation in grammatical WM.

The model outputs starting at t=310 the utterances: “a ballerina splash a cellist”
(The reader should refer to Appendix B, sec. B.4.4 for a more detailed view of the simulation run.)
Case: Patient Fixated First

In this case, for the input scene, the SS_CELLIST subscene containing the agent has saliency 1, while
the SS_.BALLERINA subscene containing the patient has saliency 0.8. This triggers a bottom-up saliency
preference towards inspecting the CELLIST subscene first.
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Figure 3.16: Model’s saccades. The model inspect the CELLIST subscene first, then the BALLERINA and
finally the SPLASH_EVT subscene.

The model outputs starting at t=310 the utterances: “a cellist is splash -ed by a ballerina”

The figures equivalent to those above can all be seen in Appendix B, sec. B.4.5. They can be easily
interpreted on the basis of the explanation given regarding the agent first case.

The following section will be dedicated to an in detail analyses of the interactions between task constraints,
scene types, and dynamic characteristic of the system showing how SALVIA can shed a new light on results
from psycholinguistics. Indeed, the next chapter will show that this apparently simple relation between
initial gaze and grammatical voice choice (for example) is not straightforward.

3.6 Simulating Key Visual World Paradigm Psycholinguistic Re-
sults

3.6.1 Time Pressure and Utterance Fragmentation
Pilot Study: Good Enough Production Under Time Pressure

Given that time and incremental processing are of the essence in the question of modeling the language
vision interface, incorporating time as a task variable through the intermediary of time-pressure allows the
study of how the dynamics of the different processes (attention, apprehension, formulation, execution) and
of their interactions is affected by changes in task timing.
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In his initial research on developing TCG, Lee (2012) ran a pilot experiment, using complex scenes, during
which subjects had to generate description of scenes with no restriction as to the linguistic form but under
two different conditions: time-pressure and no time-pressure. The goal of this experiment was to look at the
impact of time-pressure on the form of the utterances generated. In the ‘Quick task’ condition, participants
were presented with a scene and asked to start verbally describing the scene extemporaneously after only a
few seconds while they were the visual stimulus was still present . In the ‘Free task’ condition, participants
pressed a button when they were ready to describe the scene, at which point the visual stimulus disappeared
and the verbal description was recorded.

In both conditions, the semantic content of the description was similar but the ‘well-formedness’ of
the utterances (and the arrangement of their components) differed. Table3.2 provides an example of such
description by two participants (KF and JI) under ‘Free task’ and the ‘Quick task’ condition respectively.
The picture they were asked to described is shown in fig. 2.10.

Descriptions

KF (Free Task) JI(Quick Task)
a woman is kicking um
another woman in a blue dress there are two women

in one of them is kicking the other
what looks like a boxing ring woman
with many people watching and
the show sh-
this looks like some kind of boxing
match

because they’re in a ring
and there are people watching them

Table 3.2: Example of the impact of time pressure on the quality of description utterances based on the
scene shown in fig. 2.10

In order to capture the qualitative differences between produced utterances, those were analyzed according
to two criteria : structural compactness (eq 3.1) and grammatical complexity (eq 3.2).

Number of Core Words
Number of Utterances

Structural Compactness = (3.1)

Number of Embedded Structures
Number of Utterances

Grammatical Complexity = (3.2)

Table 3.3 shows such analyzes for the two examples of Table 3.2.

Descriptions
KF(Free Task)

[u, woman, kick,

JI(Quick Task)
FILLER

woman, (,blue, dress),
(e,1n, boxing ring),

[, two, woman]
[«, kicking, woman|]

Analysis (e;many, people, watching, show)] FILLER
[us boxing, match]
[, because in ring],
[us People, watching)]
(CW, E, U) (10,3, 1) 9, 0,5)
Structural compactness 10 1.8
Grammatical complexity 3 0

Table 3.3: An example of description rating. (CW = Core Words, E = Embedded Structures, U = Utter-

ances)
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Based on these measures it is possible to look at the impact of time pressure on the quality of the
descriptions produced. Lee concluded, based on the analyses shown in Table3.4, that there was a significant
effect of time pressure on both structural compactness and grammatical complexity of the utterances produced.
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Table 3.4: Results from pilot experiment. (Left) Effect of time pressure on utterance grammatical complexity.
Significant effect of time pressure on the grammatical complexity of the utterances produced (Free task: 0.28,
Quick task: 0.11, p=0.038, n=60). Placed under time pressure, participants on average produce significantly
less grammatically complex descriptions. (Right) Effect of time pressure on utterance structural compactness.
Significant effect of time pressure on the structural compactness of the utterances produced (Free task: 5.60,
Quick task: 3.91, pj0.0002, n=60). Placed under time pressure, participants packaged on average significantly
less information in their utterances.

The reader is encourage to refer to (Lee, 2012) for a full description of the empirical results.

Simulating the Impact of Time Pressure on Utterance Quality

SALVIA was used to model the impact of time pressure on utterance quality in an attempt to simulate
empirical results described above.

Parameter used were the following: Input rate =100; Num restarts = 5; Time pressure= linspace(1,1000,10);
Tau GramWM = 100; Tau SemWM = 1000; Max time = 2000; Total simulations = 26*5*10 = 1300

The ratio between input_rate and GramWM_tau was kept constant. In addition, the system was placed in
a regime in which the SemanticWM can be considered constant at the order of time of GramWM processes
(Tau_SemWM >> Tau_GramWM). Tau_GramWM was set to be in the same order of magnitude than
the semantic input_rate. Start produce was kept at 0. So in all case the first production takes place at
to=time_pressure.

It is worth noting that the model only produces “core words” due to the simplicity of its syntax. This
fits with the measure of utterance quality described in the previous section.

Tab. 3.17 show the simulation results. The simulations outputs reqarding the impact of time pressure on
syntactic complexity and structural compactness match well the empirical results even though the model was
not tuned to do so. This suggests that the hypotheses embedded in the model’s architecture and dynamics
capture, at least in part, some aspects of the architectural and dynamic constraints that shape the language-
vision interactions. It is worth however to note that, rather than the direct matching of numerical values,
the fact that the interactions between conditions fits those that were empirically observed might be a more
reasonable successful comparison.

Importantly, the model offers new avenues for empirical studies. One of those stems from the fact that, in
the simulations, the time pressure was varied continuously from high to low. This differs from the initial pilot
experiment that only looked at two conditions (Quick or Free task). Future psycholinguistic empirical work
should attempt to study the impact of time pressure on description qualities for a range of time pressures.
This would provide a more robust data-set against which the dynamics of language-vision interactions could
be computationally studied.
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Figure 3.17: Simulation results. On the x axis is indicated, rather than time pressure, the max delay between
production attempts for a more intuitive reading of the graphs (the higher the time pressure, the lower the
max delay). Moving along the x axis, the system is in a state less and less constraint by time pressure. (a)
and (b) Simulated effects of time pressure on both grammatical complexity and structural compactness.In
both cases, dotted lines indicates the empirical values for both the “Quick case” and the “Free task”. (c)
Effects of time pressure on number of utterances produced. (d) Proportion of utterances that trigger a partial
readout, resulting in a TD requests for semantic information. The dotted box indicates the regime, under
high time pressure, in which the system frequently produces partial readouts resulting in a general push
toward verbal guidance of the visuo-attentional system in order for the production to be able to smoothly
continue the utterance path it has engaged itself in.

89



3.6.2 Perceptual Guidance, Verbal Guidance, and Cognitive Thresholds

Psycholinguistics tend to use scenes that are much simpler than the ones that were used as a basis for the
empirical studies described above. Those scenes could be referred to as “minimal scenes”. As was already
mentioned in ch. 2, sec. 3.2.1, such scenes contain the bare minimum amount of perceptual content to create
a scene that is not merely a collection of objects.

Attention Capture Effects as a Function of Scene Type

Kuchinsky has shown that, for a scene presenting a single transitive event, the level of difficulty of appre-
hension of the event and of the entities that it involves can explain in part the difference in results in the
impact that Attention Capture Manicpulation (ACM) has on the word order (Kuchinsky, 2009).

SALVTIA will provide a quantitative account of Kuchinsky’s empirical findings while opening new avenue
of research.

Scene content FEasy objects Hard objects
Easy event ACM - (Structural strategy) | ACM - (Structural strategy)
Hard event ACM + (Incremental strategy) ACM 7

Table 3.5: Different cases studied by Kuchinksy and the recorded impact of Attention Capture Manipulation
(ACM on sentence grammatical structure. ACM-: No effect of ACM; ACM+- effect of ACM. ACM ?: unclear
effect of ACM. Fasy event refers to scenes in which there are direct perceptual correlates of the event taking
place; Hard event refers to scenes in which there are no direct perceptual correlate of the event taking place,
requiring further inspection of the scene content to infer the nature of the event taking place. Fasy objects
refers to scenes in which the object present are very easily recognizable both because of their nature as well
as because of their high likelihood to appear in such scenes. Hard objects refers to the opposite situation.
The notions of easy and hard compared across event and object should be taken as relative: Objects are
overall easier to apprehend than the nature of the event they are involved in (Fasy objects, Hard event) or
the opposite (Hard objects, Easy event). See tab. 3.6 for examples of such scenes used by Kuchinsky.

If the event is easy to apprehend then initial bottom-up triggered attentional shifts will have no impact
on the word order as the same perceptual event structure will be readily extracted independently of the
sequence of eye-movements and will set the stage for the high level structuring of the description. However,
if the precise nature of the participants is difficult to apprehend, feedback signals from the linguistic system
might be triggered to gather more information about the event’s participants to allow for the retrieval of
the appropriate lexical elements. The novel hypothesis here however, is that such feedback signals will be
revealed only in the case of extemporaneous production under time pressure.

The case of extemporaneous production under time pressure has been studied by Bock and Griffin, but
with three crucial caveats: first, the authors have discarded the produced utterance that were not fluent
or did not conform to the active vs passive template. In the context of studying the dynamic interactions
between active-vision and language production, a purely performance oriented analysis of situated language
use, it is our contention that the impact of the interaction between temporal dynamics of attentional shifts
in scene parsing and the temporal constraint stipulated by the task on the quality of the utterance produced
(in terms of fluency, fragmentation, etc), should be an integral part of the modeling (see below for a more
detailed analysis of this issue). The second caveat is that the scene used by Bock and Griffin might have
been two simple to fully trigger an impact of time pressure on the visuo-linguistic interaction dynamics.
Their result suggest that the subject were able to extract very quickly the general event information from
the scene. Finally, an important aspect of extemporaneous production involves the fact that it involves
generating utterances incrementally possibly prior to the time at which the full apprehension of the event, full
conceptualization, and full grammatical formulation as taken place. Each word uttered therefore correspond
to a decision point that commits the speaker to a some grammatical structure, which, as more perceptual
information is gathered, need to be smoothly altered in order for the utterance to appear continuous (i.e.
without correction, rephrasing, restarts etc.). In extemporaneous production under time pressure, “utterance
continuity” becomes an important factor in determining the course of the visuo-linguistic interaction process.
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(C) Easy event with difficult characters (D) Difficult event with difficult characters

Table 3.6: Example scenes used by Kuchinsky (2009), which are categorized into four types depending on
the codability of the depicted events. The cueing effect was found only for type (B).

Time pressure Utterance Cued first | First TD request
Yes (70)lady(160)[lady] talk to(221)[lady talk to] people Yes (160)patient(uncued)
No (520)woman talk to people Yes None

Table 3.7: Hard event, easy objects, agent cued. Only under time pressure does the attentional cueing
have an effect on the output. Input rate is set to 100. Active voice is assumed here to be always preferred
to passive voice.Time pressure: stipulates whether or not time pressure was applied to the production
system (Yes: time pressure = (input rate)/2, No: time pressure = (input rate)*5). Utterance: Production
output in the form ((t)‘utter’)*, where (t) indicates at which time step ‘utter’ was produced. ‘[ ]” highlights
utterance continuity. Cued first: has value ‘Yes’ if the first word uttered correspond to the semantic content
of the perceptual areas that has been cued (here agent). First TD request time and nature of the first
top-down attention-orienting request sent from the language system to the perceptual system.

Perceptual vs. Verbal Guidance: a Function of Scene Types and Time Pressure

Hard Event, Easy Objects SALVIA’s simulation of a case in which the participants are easy to identify
but the structure of the event is difficult to extract while in Table 3.7.

The model is provided with a scene input described in fig. 3.18 (same conventions as those used in fig. 3.3).
The scene is considered to be an hard event scene since there are no direct perceptual features marking the
event-structuring action (while the participants are rather typical). Cognitive reasoning is required to recover
the event identity.

Under time pressure, an incremental attentional strategy is chosen. This strategy is illustrated in
fig. 3.19. The first TD request is sent to direct the system towards the uncued patient after the system has
already processed the agent area towards which it was initially cued. In order, attention is directed towards
(1) cued agent area, (2) action area triggering the retrieval of the event structure allowing for the sentential
transitive active voice construction to start piloting the utterance production, (3) towards the uncued patient
area, a choice that is piloted by the TD request from the Grammatical WM that needs information about
the patient to finish the utterance.

In the high low time pressure case, all the semantic information has been extracted prior to the system
having to generate an utterance. It uses the transitive active voice and does not need to generate top-
down requests. The order in which the areas are attended to is irrelevant. A key aspect of the modeling
results needs to be highlighted here regarding the fact that, in the low time pressure case, the cued element
appears first in the utterance sequence. It should appear with (near) chance probability as subject or
object. However, the cued element appears first due to the combination of active voice preference and pre-
conceptualization of event as “TALK” (vs “LISTEN”). By pre-conceptualizing the event as “TALK”,
the cued entity (WOMAN) is bound to appear as agent in the semantic representation. If the active voice
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Figure 3.18: Illustration of a scene input. (Left) Subscenes and the semantic content that is retrieved when
they fall in attentional focus. The organization from top to bottom reflects the hypothesized hierarchy
between the subscenes in terms of how easily they are built (easiest at the top). In this case, the specific
object anchored event subscenes are hypothesized to be most easily retrieved from the input (in absence of
other factors such as top-down requests). Conversely, the subscenes that more abstractly structure the scene
content, building action-based event level relations is assumed to be, relatively, harder to build. (Example
of a scene with Easy object, Hard event) (Right) The image regions they are linked to. (scene adapted from
(Kuchinsky, 2009))

Y
TALK Y WOMAN

V PEOPLE TALK
woman [woman] [talk to] [] [woman] [talk to] [people]

Figure 3.19: Structure extension. Process consistent with the incremental view (Gleitman et al 07,

initial perceptual guidance). (High time pressure case) (grey: focus region, dotted-red: subscene perceptual
structure) (Details in text)
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Time pressure Utterance Cued first | First TD request
Yes (312)mouse squirt at turtle No (70)agent(uncued)
No (520)mouse squirt at turtle No None

Table 3.8: Easy event, hard objects, patient cued In both time pressure cases, the attentional cueing
has no effect on the produced output. Input rate is set to 100. Active voice is assumed here to be always
preferred to passive voice. Time pressure: stipulates whether or not time pressure was applied to the
production system (Yes: time pressure = (input rate)/2, No: time pressure = (input rate)*5). Utterance:
Production output in the form ((t)‘utter’)*, where (t) indicates at which time step utter’ was produced.
Parentheses highlight utterance continuity. Cued first: has value ‘Yes’ if the first word uttered correspond
to the semantic content of the perceptual areas that has been cued (here agent). First TD request time
and nature of the first top-down attention-orienting request sent from the language system to the perceptual
system.
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Figure 3.20: Structure specification. Process consistent with the structural view (Griffin et al. 00, lin-
guistic guidance). (High time pressure case) (grey: focus region, dotted-red: subscene perceptual structure).
(Details in text)

is favored, then, in absence of other constraints such as time pressure, it will be mapped as the subject of
the utterance, appearing first.

This issue regarding the relation between conceptualization and language-vision interaction under time
pressure will be addressed in discussion.

Easy Event, Hard Objects SALVIA’s simulation of a case in which the main structure of the event is
easy to perceptually extract while the participants are difficult to identify is shown in Table 3.8.

The scene input used in this case is the one shown above (cf. Figure. 3.3). The scene is considered to be
an easy event scene since there are direct perceptual features marking the event-structuring action (while
the participants are rather atypical).

Under time pressure a structural attentional strategy is chosen. This strategy is illustrated in
fig. 3.20. The first TD request is sent to direct the system towards the uncued agent: since the event-
action gist is available first, the transitive active voice construction is activated right away,and takes over
the process of guiding the attention towards the agent area, whose information is required to fill the subject
slot and therefore start producing utterances. The attention cueing towards the patient is overridden by
TD structural constraints. In order, attention is directed towards (1) the general action area from which
the semantic gist of the event (transitive action) is extracted, (2) agent area, following from the need to fill
in the subject slot of the transitive active voice construction (3) action area, to fill in the verb slot in the
construction, and finally (4) towards the cued patient area, a choice that is piloted by the TD request from
the Grammatical WM that needs information about the patient to finish the utterance.

As in the previous case, in the absence of time pressure, all the semantic information has been extracted
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prior to the system having to generate an utterance. It uses the transitive active voice and does not need to
generate top-down requests. The order in which the areas are attended to is irrelevant.

Comparison Looking only at the case in which time pressure is applied, those simulations show how the
structural strategy emerges in the case of scene for which the event is easier to apprehend than the objects:
the quick apprehension of the event’s structure sets the grammatical frames which governs from then on the
attentional system. On the other hand, in the case of easy objects and hard event, the incremental strategy
tied to perceptual guidance emerges during the early steps of the process: the grammatical processes and
therefore the utterance are shaped by the patterns of attentional shifts until the structure of the event can
be extracted.

In the absence of time pressure, the simulation finds no effect of pattern of attentional shifts appears on the
output utterance. However this indicates neither a structural or an incremental strategy, rather, the impact
of the order in which the information is received on the Grammatical WM processes becomes negligible in
comparison to grammatical endogenous factors (e.g. grammatical preferences, lexical accessibility, priming
effects, etc)

3.6.3 Saliency, Perceptual Guidance and Information Structure: Impact of
Saliency on the Use of Active vs. Passive Construction.

In the previous section, preference for active voice was assumed and saliency of the various objects was
only manipulated through the subscene structure that composed the input scene representations. SALVIA,
however, offers a platform on which much deeper analyses of those issues can be carried out by expanding
the parameter space considered. This is of course costly and, for the present work, only one result will be
put forward, as a way to open the door for future simulations.

In order to better understand the relation between ACM and sentence structure, SALVIA allows to
manipulate the relative preferences of SVO and PAS_SVO constructions, the saliencies of subscenes and of
the perceptual schemas that compose them, etc.

The previous chapter (ch. 2, sec. 3.5.3) presented simulation cases in which changes of saliencies as well
as differences in preferences between active and passive voice constructions, led to different state trajectory
and ultimately different utterance outputs.

It would be worth investigating the joint impact of saliencies and voice preferences on description output,
going further than what empirical ACM studies have done, possibly opening new avenues for psycholinguistic
studies.

As a first preliminary result, SALVIA was run on a set of inputs corresponding to single transitive event,
in which the saliency of the agent and patient varied over a given range. The semantic input was static (i.e.
that only the saliency varied between inputs, not the order or timing at which they semantic information
was received.)

The parameters for the simulations are: SVO preference = 1, PAS_SVO preference = 0.7, Saliency range
for patient and agent [0.5,0.6,0.7,0.8,0.9,1.0], Random restarts = 30.

The summarized results of the simulations are shown in fig. 3.21

Such results should be taken to indicate that for now, this work only scratched the surface of the complex-
ity of the interactions between the various parameters that can impact the SALVIA behavior and hence the
observed patterns of relations between attentional and utterance sequences. It nevertheless offers a flexible
framework in which such complex interactions can be quantitatively studied.

3.7 Conclusion

3.7.1 Summary of Results: SALVIA as a Cognitive Model of Language Pro-
duction

SALVIA offers a novel Schema Theory based cognitive model of language production focusing: (1) on the
dynamic coordination between an incrementally built message, tied here to the incremental attentional
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Figure 3.21: Transitive action (static). Given an input SemRep showing a simple and static transitive action
involving one agent and one patient, the figure shows the prevalence of active voice and passive voice as
a function of the saliency of the agent and the patient. A value of 1 signifies that only active voices are
produced while -1 signifies that only passive voices are produced. As the saliency of the agent increases
compared to that of the patient, the proportion of active voice descriptions increases monotonically. The
negative value for the equivalence point (y=0) reflects the lower preference value of the passive construction
compared to the active construction.

Gleitman et al. 07 Griffin and Bock 00
Attentional processes <> Linguistic processes | Perceptual guidance (—) | Linguistic guidance (+)

parsing of a visual scene , and (2) on the role played in the visual scene description processes by language-
driven feedback signals, insisting on the fact that vision-language interactions should be construed as part
of a perception-production cycle as shown in fig. 3.22.

SALVIA should also be seen as a test case for the Schema Theory modeling methodology.

3.7.2 Summary of Results: SALVIA as a Psycholinguistic Model

Kuchinsky (2009) defended the hypothesis that the difference observed between the experiments of (Gleitman
et al., 2007) and (Griffin and Bock, 2000), concluding respectively in the position re-summarized in tab. 3.7.2
can be explained by factoring in the nature of the scene.

SALVIA offered simulations that concord this hypothesis in the case of description under time pressure.
However, for SALVIA, perceptual and linguistic guidance views correspond to two extrema on a continuum.
It therefore provides a computational support for Kuchinsky’s theory while extending the analysis to complex
scenes where perceptual and linguistic guidance become intertwined.

TCG-SALVIA highlights how outcomes that have been attributed to specific symbolic processes could
instead derive from variations in the temporal dynamics of the system’s states and of their interactions
It shows how the quality of descriptions can derive from the interactions between task parameters (time-
pressure) and the system’s dynamics (Cooperative computation parameters, timing of BU and TD signals).

Many issues remain to be addressed by future work. The impact of Grammatical WM processes’ char-
acteristic time in the present model is tied to the preference for SVO active voice construction in two ways,
a higher initial activation for SVO is assumed while the Semantic WM is considered to be quasi-static com-
pared to Grammatical WM. It is legitimate to ask what happens if these conditions are dropped. In addition,
the impact of various other factors on the description process should be investigated:

e Impact of idiosyncratic preferences between argument structure constructions.

e Impact of information structure on construction choices.
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Figure 3.22: Vision-language as a perception-production cycle. SALVIA models the role played by visuo-
attentional processes in incrementally extracting the perceptual meaning of a scene, meaning that is then
conceptualized into a linguistic message dynamically mapped onto utterance forms (bottom arrows). But,
importantly, it insists on the fact that this “feed-forward” pathway has to be supplemented by a “feedback”
one through which the language production system can send requests to the visuo-attentional system in
order to adapt the attentional processes to time dependent needs of the language processes (top arrows)
(figure adapted from (Lee, 2012))

e Impact of grammatical semantics constraints (how agent-like is the agent ...)

SALVIA indirectly opened a discussion regarding the impact of the interplay between task constraints
and language-vision interactions on conceptualization processes.

Fig. 3.23 shows a situation that differs from the one presented above in fig. 3.19. Whereas in the simulated
case, SVO (active voice) was considered to be necessarily preferred to the PAS_SVO (passive voice) for the
description of the scene content, here both are considered. Compared to fig. 3.19, in the present case
the PEOPLE are cued instead of the WOMAN. In this case, visuo-attentional system retrieves first the
information about both the PEOPLE and the WOMAN before it tackles the question of the nature of the
(hard) event they are involved in. As it attempts to retrieve perceptual information regarding the nature
of the event, since PAS_SVO and SVO are in competition, there are two possible outcomes depending on
the winner. To describe those, it is necessary to abandon the idea of a pre-defined conceptualization of the
action. Indeed, if SVO wins, placing “people” in the subject position with the active voice already selected
and “woman” in the object position, then, the necessity to recover the missing semantic information required
to specify the verb will trigger both visuo-attentional processes as well as conceptualization process. The
action has to be conceptualized as LISTEN for the active voice to be used. In the converse situation in which
the PAS_SVO construction instance wins, the action will be required to be conceptualized as TALK.

The top-down feedback sent by the language system onto the visuo-attentional system necessarily need to
also include information relevant to the conceptualization processes so that the perceptual content retrieved
can also be construed in a way that smoothly fits in with the ongoing grammatical processes mapping
meaning onto form.

3.7.3 Representation and Semantics of Complex Visual Scenes

It is worth interrogating the nature of the visual scenes used in the study of vision language interactions and
how the type of scenes used could impact the analyses of the processes.

It is worth contrasting the examples of scene used in psycholinguistic studies of language production as
shown, for example, in tab. 3.6, and a more realistic scene as represented by the photograph shown in fig. 3.9
(left). The scenes used in psycholingusitic experiments consist of a simple drawing of a unique event. It
should be immediately clear that the very nature of those scenes will impact to what extent the various
visuo-attentional processes will be involved in their analysis (but see (Knoeferle, 2016) for an overview of
the more recent use of complex visual contexts in VWP experiments, which, however, are beyond the scope
of the present paper).
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Figure 3.23: Impact of incrementality on conceptualization. (Details in text)
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Table 3.9: Left) A complex scene. (Right) A example of scene representation (SceneRep) that could be used
to represent the perceptual content of this scene.
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Figure 3.24: Photo taken of President Obama by Chief Official White House Photographer Pete
Souza. The photo was accompanied by the caption: “President Barack Obama jokingly puts his
toe on the scale as Trip Director Marvin Nicholson, unaware to the President’s action, weighs
himself as the presidential entourage passed through the volleyball locker room at the Univer-
sity of Texas in Austin, Texas, Aug. 9, 2010. (Official White House Photo by Pete Souza)”
(https://www.flickr.com/photos/obamawhitehouse/4921383047 /in/photolist-95Yjre-8uTnHR)

What perceptual information should the cognitive system apprehend at each time during the processing
of a visual scene in order to support the formulation of a description? This question finds a relatively direct
answer in the case of the simple drawings since those represent an already conceptualized/idealized version
of a real scene, that can be wholly apprehended through very few fixations.

The scene shown in fig. 3.9 already presents a much more complex situation. It can be analyzed as
potentially containing multiple sub-scenes, each with its own complexity. In addition, following the first
few saccades, the subject might have extracted some information regarding the perceptual meaning of the
scene: e.g. this is a scene of a track and field running race. But the perceptual representation might need to
be revised once the viewer realizes that one of the the runner is missing a limb, leading to check the other
runners, noticing that they too miss a limb. Influenced by the intrinsic property of the image content, the
task, the state of the viewer etc., the attentional system will incrementally build the relevant sub-scenes
from which are derived the semantic content to be formulated. Those sub-scenes end up forming their own
complex network that represent the current outcome of the scene apprehension process (Itti and Arbib,
2006).

It is worth noting that even in the case of a photograph, we are still far from the complexity of a
naturalistic task such as asking a subject to describe what is you are seeing at a random moment of her day.

We have propose with SALVIA a treatment of visual scene parsing, representation, and interaction with
the language system that does not fall prey to some of the main oversimplifications that one could derive by
using simple drawing as the scene prototype. The model does not treat scenes as sets of visual elements but
takes into account the possibility of a cognitive representation made of a hierarchy of anchored subscenes.
However so far the treatment of the visual input has essentially not been integrated to the model and much
work remains to be done in order to be able to handle scenes such as the one showed in Figure 3.24. So
far no model integrating vision and language comes close to being able to generate the kind of caption that
human readily produce and understand as the one associated with this official white house photography.
We nevertheless contend that in order to progress in our understanding of the human language system
in its contextual use, it is worth assuming the availability of visual computation outputs that the vision
models cannot yet deliver, so that progress can be made jointly by the language and vision computational
communities towards the better understanding of high-level cognitive representation of visual scenes.
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Chapter 4

Template Construction Grammar
(TCG): Formalism for Dynamic
Grammatical Processing of
Incrementally Built Semantic
Representations.

“If one’s goal is to “naturalize” semiolinguistics structures, one has to account for them as a special kind of emerging
Gestalt. A key consequence of this conversion of paradigm is to abandon the requirement that models of matural
syntactic structures be formal (algebraic, combinatorial, etc.) Indeed, in natural sciences, the mathematical structures
used for modeling an empirical phenomenal realm have nothing to do with any “ontology” of this realm. Their scope
is to provide appropriate computational tools for reconstructing phemomena. It is therefore a deep epistemological
mistake to believe that natural languages have necessarily to be modeled using formal languages.”

Petitot

Morphogenesis of Meaning

4.1 Introduction

Template Construction Grammar (TCG) is a novel implemented computational construction grammar frame-
work. It is part of a more general effort to develop a neurolinguistic model of vision-language interactions and
follows the tenets of Schema Theory as a cognitive-level brain modeling philosophy (Arbib, 1989). Its main
focus is to provide a framework to model the brain’s capacity to seamlessly and dynamically coordinate the
multiple sub-systems involved in situated language use. This chapter presents the details of the formalism
and processing supporting TCG in the context of language production (A more informal presentation of
TCG can be found in (Barres, 2017).)

The nature of the cognitive processes at play during the generation of visual scene descriptions has been
investigated by psycholinguistic experiments based on the Visual World Paradigm (VWP): the subject is
asked to verbally describe a visual scene while her eye-movements and utterances are recorded. The relations
between those two temporal sequences (saccades and words) reveal complex dynamic interactions between
three cognitive systems: visual, semantic, and grammatical, each having its own internal dynamic behavior
(Knoeferle and Crocker, 2008). As visual information is actively gathered through attentional exploration of
the scene, this information is readily used to update the semantic representation (message) to be linguistically
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Figure 4.1: Language production sub-system of the Schema Architecture Language-Vision InterAction model
(SALVIA). Each box corresponds to a system with arrows indicating message passing. The core of the system
lies in the articulation and temporal coordination of the two main working memory systems: SemanticWM
(message) and Grammatical WM (grammatical processing). (See main text for details)

conveyed in a description. The state of the grammatical processes, mapping meaning onto verbal form, are
constantly updated to adapt to changes in the semantic state.

Schema Theory offers a top-down counterpart to the bottom-up neural network modeling approach. It
focuses on the adaptive and dynamic nature of the interactions between distributed computational units,
respecting the computational style of the brain.

Template Construction Grammar (TCG) provides a new chapter in the application of schema theory to
language (Arbib et al., 1987). As a construction grammar (CxG), it assumes that constructions, defined
as a meaning-form mappings, are the only units of grammatical knowledge. Building on the VISIONS-
Schema System model of visual scene interpretation (Draper et al., 1988), TCG plays a central role in the
Schema-Architecture Language-Vision InterAction model (SALVIA) where it operationalizes the grammat-
ical processes at work in the dynamic and adaptive translation of visually extracted, incrementally built
semantic representations into online utterance production (see Ch. 2).

Template Construction Grammar is part of a growing number of computational construction grammar
frameworks, all sharing the same goal to model situated language use and its relation to non-linguistic
cognitive systems. Being based on Schema Theory, TCG is uniquely placed to serve as bridge between
the computational CxGs with a classic A.I. focus (Fluid Construction Gramar (Steels, 2011), Embodied
Construction Grammar(Bergen and Chang, 2005; Feldman, 2010) and the neural network implementations
(Dynamic Construction Grammar (Dominey et al., 2009; Hinaut et al., 2015; Hinaut and Dominey, 2013).

TCG is first and foremost designed to fit the requirements posed by the question of the dynamic interac-
tions between visuo-attentional and language processes tackled in the context of brain theory. Its goal is not
offer a CxG analysis of a particular language. It insists on the need to develop models that accommodate
the requirements of distributed computation. Anchoring the model in vision-language interactions offers a
fruitful terrain to explore those computational issues. TCG however is not a priori limited to generating
visual descriptions.

TCG as a grammatical processing model has been used to simulate key psycholinguistic results regarding
the interactions between visual scene attentional parsing and utterance characteristics (Lee, 2012) (see Ch. 2).

4.2 System-Level View

4.2.1 A Schema-Theoretic Model of Language Production

TCG supports the online grammatical processes ensuring the flexible coordination of an incrementally built
message and the ongoing production of utterances that reflect whole or part of the current semantic content
to be conveyed. Fig. 4.1 presents the integration of this process within the Language Production sub-system
of the Schema Architecture Language-Vision InterAction model (SALVIA).In what follow, I will describe the
TCG processes as part of the language production system of SALVIA. The suffix “(P)” in fig. 4.1 indicates
that the systems are linked to language production. The TCG framework does not assume a priori the
symmetry of processes between production and comprehension (see (Barres and Lee, 2013) for a discussion
of the comprehension processes).

The model takes as INPUT the specification of a temporally unfolding message content which incremen-
tally updates the semantic representation hosted by the semantic working memory system (SemanticWM).
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The grammatical working memory system (GrammaticalWM) builds on top of the semantic representation
by applying the appropriate constructions to build a mapping from meaning to form (Those constructions are
retrieved by the CxnRetrieval system from a grammatical knowledge stored in the grammatical long term
memory (LTM) system (GrammaticalLTM)). Those two working memory systems hosts time dependent
states and processes. The main challenge for TCG is to dynamically and adaptively handle their interac-
tions. The phonological working memory system (PhonologicalWM) simply hosts the current state of word
sequences that have already been chosen as the basis for an utterance. Those are posted as OUTPUT. The
remainder of the paper details those systems and processes as they relate to TCG.

4.2.2 Schema Theory and Cooperative Computation: What You Need To Know

The full neurocognitive computational framework of Schema Theory (ST) is presented in sec. 1.4 and in
Ch. A. For the reader that wished to skip those details, the key tenets of this theoretical foundation of the
present modeling work or briefly restated here.

At a cognitive level, schemas represent portions of knowledge (declarative or procedural). They are
organized into schema networks that form the state of long term memory systems (LTMs), each defining a
type of knowledge over given domain. A LTM is always linked to a Working Memory (WM) in which the
knowledge it stores is put to use. Once a schema is deemed relevant to the current state of the computation,
it is invoked in WM in the form a schema instance. Each instance represents a hypothesis offering a partial
solution to the problem the WM attempts to solve. It carries an activation value that indicates the degree
of confidence associated with its hypothesis.

Cooperative computation (C2) fuels WM processes. Instances compete and cooperate, respectively form-
ing inhibitory competition links (comp_link) and excitatory cooperation links (coop_link). At each time the
whole set instances and C2 links (coop_links and comp_links) form a C2 network. The dynamic system it
defines governs the temporal trajectories of the instances’ activation values. Cooperating instances form
assemblages, each corresponding to a potential way to compose instances in order to generate a solution.
Schema Theory prescribes that instances corresponding to hypotheses that support each-other engage in
cooperation while those that correspond to contradictory hypotheses compete. The precise process through
which instances organize into a C2 network however is specific to each WM sub-system. (For more details
on the formalism of Schema Theory please refer to sec. 1.4 and Appendix. A).

The use of Cooperative Computation is a core step in building computational cognitive models. It has
been shown to adequately capture the known properties of cognitive operations (McClelland, 1993) (see
discussion in sec. 1.4).

In what follows, I will present in order: the semantic representation format , the TCG constructions, the
process by which the construction instances are invoked, and what governs the creation of competition and
cooperation links governing the C2 dynamics.

4.3 Incremental and Dynamic Semantic Representation (SemRep)

The rather simple formalism of the SemRep has already been presented in Ch. 2, sec. 2.3.

In SALVIA, a Conceptual LTM (not shown in fig. 4.1) defines a network of concept schemas. It forms
a repository for a semantic network model of world knowledge. In the current implementation the seman-
tic network is a hypernym-based (IS_A) taxonomy. Concept schemas are limited to five types: EVENT,
ENTITY, ACTION, PROPERTY, and RELATION.

Beyond concepts, EVENT, ENTITY and ACTION can be used to define FRAMES whose behavior
is in line with typical frame semantics. Although for now the world knowledge model does not contain
frame knowledge, frames can be used to significantly open the semantic expressiveness of the model. In this
chapter the full SemRep representation will be shown including the FRAME nodes which were hidden, for
simplification purposes, in the previous chapters.

Conceptual schema instances are invoked in Semantic WM to form a Semantic Representation (SemRep).
Since all the conceptual relations are binary, the SemRep is conveniently expressed as a labeled (not nec-
essarily connected) directed graph: edges correspond to RELATION, while nodes correspond to FRAMES,
EVENT, ENTITY, ACTION, or PROPERTY concept schema instances. No cooperative computation is
implemented within Semantic WM (i.e. the semantic message does not contain any conflict).
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The limitation to these classes of semantic concepts derives from the fact that the model is designed as
part of (although not limited to) a model of visual scene description in which a core requirement of semantic
contents is that it is always tied to incrementally generated perceptual representations. For this reason,
elements that can be more directly tied to percepts have been the focus, leaving aside in the process a large
chunk of key elements that should enter into the definition of semantic representation. The model could be
supplemented with some of those elements (e.g. negation, quantification etc.). But those should be added if
a process to link them to some cognitive processes (be it one tied to visuo-attentional processing or other)
can be outlined as their support.

As was discussed in previous chapters, at each time step, the SemRep can be updated, modifying the
content of the message that has to be expressed (fig. 2.15, 2.16, 2.17). Incrementality takes place both
through updating the semantic graph structure and through the activation value dynamics of the conceptual
schema instances that compose the SemRep graph.

The goal of grammatical processing using TCG is to generate a flexible grammatical structure articulating
the incrementally built SemRep and the production of utterances.

4.4 Grammatical Processing

4.4.1 Template Construction Grammar: Language Representations as Tem-
plates of Meaning-Form Mapping

We propose Template Construction Grammar (TCG) as the basis for a schema theory model of grammatical
processing. TCG, as a computational construction grammar, builds on the insights of more complex sym-
bolic models (Embodied Construction Grammar and Fluid Construction Grammar) (Steels, 2011; Feldman,
2010; Bergen and Chang, 2005). TCG however significantly reduces the complexity of the semantic and
grammatical representations tackled in order to better focus on the use of the constructions as language
schemas engaging in C2.

Tt is important to keep in mind the distinction between the construction format (defined here) and its use
as basis to define language schemas which taken together form the state of grammatical knowledge (described
below).

Construction

A construction Caxn is defined as the tuple
(Class, SemFrame, SynForm, SymLink)

where:
e (Class represents the general grammatical category the construction belongs to.
e SemFrame (Semantic Frame) represents the meaning pole.
e SynForm (Syntactic Form) represents the form pole.
e SymLink (Symbolic Links) represents the symbolic linkages between form and meaning elements.

The elements that compose a construction are defined as follow:

Class

Class of a construction is defined as a string ¢ € C, where C is the set of all possible construction classes.
This set is user defined and need not reflect the canonical syntactic classes.
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SemFrame

SemFrame is defined as a labeled directed graph G = (N, E) with N = {N;} set of labeled nodes, and
E C N x N set of labeled edges. Nodes stand for concepts while edges stand for conceptual relations. This
structure of the SemFrame mirrors that of the SemRep.

The SemFrame graph representation is enriched to convey features such as Head and Focus, which are
both boolean values. The node defined as a Head defines the semantic class of the construction, in much
the same way Class defines the grammatical class of the construction. The Focus feature carries pragmatic
information (information structure (IS)) which is directly co-expressed with the more classically semantic
content represented by the SemFrame graph. Following the notion of IS, the Focus node is associated with
the information that is pragmatically highlighted by the construction. For example, if a transitive and a
passive construction have an almost identical SemFrame, they differ in terms of their Focus (which falls on
the agent and on the patient respectively).

SynForm

SynForm is defined as a list (f;) such that Vi, f; € £y, where ¥ = Word_forms U Slots.

Word_forms is the set of word forms (or lexical forms), linked to Phonological knowledge of the system
(which won’t be detailed here.).

Slots play a key role as variables (phonologically empty form) that need to be filled by the form of another
cooperating. Slots are defined as elements of C'V and are noted [c, ¢z, ...] where each ¢; is a construction class.
These impose class-based restrictions on the constructions can be provide their missing form content. The
list format of the SynForm is essentially equivalent to a representation of syntactic feature limited to next
temporal relations, where the next(f1, f2) simply imposes the syntactic constraint that f; directly follow
f2 in the temporal unfolding of the utterance. This focus on temporal sequence syntactic constraints is of
course limited, but sufficient for our purposes.

SymLink

SymLink (or SL) defines a partial mapping between SemFrame nodes and SynForm forms. SL : N €
SemFrame — f € SynForm. As SL is partial, not all nodes are mapped onto a form, not all forms have an
antecedent in the SemFrame, however, each slot must have a unique antecedent node by SL. Symbolic links
establish the coupling between semantic and syntactic features. The fact that some nodes might not belong
to SL™1(SynForm) reflects the fact that some constructional semantic information might be packaged
in a way that is not directly symbolically mapped onto the form pole (although it is implicitly mapping
through the general association of the SemFrame with the SynForm within a construction, cf. IN.COLOR
construction in fig. 2.11). A main simplification made by TCG is that all the SemFrame edges (conceptual
relations) are assumed to be symbolically represented in the SynForm (there are no slot/unbound variables
symbolically associated with edges in TCG framework).

Template

SemFrame, SynForm, and SymLinks, taken together form the cxn template defining the meaning-form
mapping. Figures 4.2 and 4.3 provide a few example.

Preference and Group

Two optional features Preference and Group can be added to the constructions to allow difference in process-
ing treatment. Preference defines a scalar value that captures usage preferences (e.g. derived from frequency
of use) and during processing modulates the initial activation value of construction schema instances. Group
defines construction subsets (e.g. lexical and grammatical constructions) that can then be processed differ-
ently. There is no a priori limitations to using this grouping. Groupings could be defined based on usage or
other empirical results.

From this construction formalism, it is possible to define a Grammar.
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Grammar

A grammar G is defined as a set of constructions {Can;} (at times referred to as a constructicon). Con-
structions in a grammar can span all levels of linguistic representations (in particular including word-level
as well as argument structure level and even multi-clause level constructions). As a construction includes a
SemFrame which is defined in terms of concepts, a construction, and by extension the whole grammar, is
necessarily defined in relation to a conceptual knowledge.

The model does not impose a particular content for the grammar and offers the option to write and test
new grammars using simple json format.

A Few Examples

Figures 4.2 and 4.3 present a few construction examples illustrating those features. Each construction is
assigned a class. If for simplicity the classes used here are similar to the classic syntactic classes, there
is no a priori constraint on the number or nature of those classes. Following the main tenets of cognitive
linguistics focusing of language in use, linguistic knowledge is not divided into components (phonology,
syntax, semantics, and pragmatics), rather any construction can potentially cut across all those strata. For
this reason, constructions ran the gamut from lexical constructions (e.g. WOMAN_1, WOMAN_2) all the
way to argument structure constructions (e.g. PAS_SVO). Double circle SemFrame nodes mark head nodes.
Filled nodes in the SemFrame mark nodes that imply a link to a referent (in the present case, a referent
is often a referent in the visual world, but this is not an intrinsic limitation of the system). The link to
referents plays a role in triggering co-reference resolution (used in comprehension). Dashed lines indicate
symbolic links between form and meaning.
Fig. 4.2 highlights a few “lexical” constructions.

name: KISS
class: V

name: WOMAN name: WOMAN2
class: N class: N

J

SemFrame

SemFrame SemFrame

‘HIIIII’ - ‘IIIII’) -
SynForm SemFrame 'f;' :y"
SynForm | . SynForm ) .

OUNG fefesesefe

Figure 4.2: Example of “lexical” constructions.

name: YOUNG

class: A

Fig. 4.3 highlights a few abstract constructions ranging from discourse level constructions to noun phrase
level constructions.
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Figure 4.3: Example of abstract constructions

The reader can find in Appendix G the list of most of the abstract constructions that were used.

4.4.2 Language Schemas
Construction Schema

A language schema or construction schema defines a functional unit of grammatical knowledge. The con-

struction schema is defined as a tuple
(Can, act®)

where C'rn is a construction as defined above, and act® € [0,1] is a scalar value used to define the initial
activation value when an instance of the schema is invoked.

Grammatical Knowledge

Although schema theory hypothesizes that long term memory (LTM) should be represented as a schema
network, TCG in its current version simply models Grammar LTM as the set of all construction schemas
defined based on the grammar:

Grammatical LTM = {(Czan;,act?); Cxn; € Grammar}

. Future work will need to follow in the footsteps of Fluid Construction Grammar that has made use of a
dynamic priming network to simulate the temporal evolution of the state of grammatical knowledge Wellens
and Steels (2011). In the current implementation, for each construction Cxn;, act? is set based on an LTM
defined act® and on the construction’s preference p;: act! = p;.act®. If no preferences are defined for the
constructions, all the preferences are automatically set to 1.
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4.4.3 Dynamic Grammatical Processing of Incrementally Built Semantic Rep-
resentations

Incremental Instantiation of Construction Schemas

Incrementally, when new SemRep nodes or edges (i.e. conceptual schema instances) are invoked in Semantic
WM, constructions schema whose SemFrame semantically match (SemMatch) a SemRep subgraph that
contains some new elements are invoked as instances in Grammatical WM (cf. fig. 2.15 and 2.16). A semantic
match between a SemRep subgraph and a construction schema SemFrame indicates that the construction
expresses in its form, at least in part, the semantic content of this subgraph and is therefore a candidate
hypothesis for participating in the mapping of the SemRep onto a linguistic form in Grammatical WM.

There they dynamically interact through competition and cooperation to yield stable assemblages, each
representing a possible organization of a mapping between meaning to form.

The goal of the cooperative computation (C2) is to orchestrate the seamless incremental dynamic in
which the construction schema instances are engaged in self-organizing and built meaning-form mappings.

Grammatical WM State

At each time step, the state of the Grammatical WM is defined by the construction schema instances that
are currently active as well as by the cooperation and competition links that they have established and that
governs the cooperative computation (fig. 4.5).

Resulting from its invocation into its associated working memory, a construction schema instance is
defined as a tuple:

(id, Cxn, a(t), covers)

where: id is a unique identifier (since multiple instance 'tokens’ can be invoked from the same schema
'type’), Cxn € Grammar, a(t) € R is the activation value, and covers : g € SemRep — SemFrame is a
subgraph isomorphism that links a subgraph of SemRep to the instance’s SemFrame.

Following the invocation process (see below), this mapping keeps a trace of the semantic representation
that the construction instance translates into a (possibly incomplete) linguistic form template. It also
establishes cross WM links (c.f. Ezt; in Eq. 4.2)

Figure 4.5 provides an example, taken from a simulation, of both the state of the Semantic WM (center
graph, concept instances forming a semantic representation - SemRep) and of the Grammatical WM (Con-
struction schema instance graph). It mirrors the informal example that was presented in fig. 2.12. Here
the message to be expressed is that of an EVENT involving a single TRANSITIVE ACTION (PUNCH),
that in turn involves two participant ENTITY: A WOMAN playing the agent role, and a MAN playing
the patient role. Construction schema instances enter in cooperative computation, resulting in a dynamic
coordination being put in place between Semantic and Grammatical WM in fig. 4.1. Construction instances
attempt to dynamically map the semantic content of the message to convey onto a linguistic form by forming
a C2 network. Note that here the cross WM links between a construction schema instance and the concept
schema instances it covers are not shown (but the reader can easily look at the SemFrame of the various
construction instances and see what part of the SemRep they contribute to map onto form.)

4.4.4 Construction Schema Instantiation: SemMatch

Constructions in TCG adopts a coupled structures approach to constructional representational format (Sem-
Frame SynForm linked through SymLinks), approach common to most Computational Construction Gram-
mars (CompCxQG) formalisms: ECG and FCG used coupled feature structures one for meaning pole and one
for form pole with coupling ensured by co-references of variables across meaning and form pole structures
(Chang et al., 2012). In the case of production, the meaning pole defines the part of a whole semantic
structure that a construction can express in its form pole.

The guiding principle in designing construction schema processing algorithms consists in the necessity to
handle the incremental nature of the semantic representation, an issue that is sidestepped by all the other
CompCxG frameworks. Contrary to those other endeavors in which incrementality and online processing is
not the focus, an approach in which the search for a solution to the meaning-form mapping operates following
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Figure 4.4: Construction schema instances. As for all schema instances (cf. Appendix A, fig. A.2), a
construction schema instances is defined by some declarative content derived from a knowledge schema (the
construction as defined in TCG format), an activity value a(t) reflecting the relevance at each time of the
construction instance as useful in forming a meaning to form mapping and that is determine through C2
dynamics, a set of input and output ports through which the instances can create cooperative assemblages.
Each construction instance is defined by a single output port and one input port for each slot element in the
associated cxn SynForm. (Left) Example of construction instance derived from the SYMMETRIC_TRANS
construction (involved in sentence structure such as “the man and the woman shake hands.” (involve
symmetric action). The instances has three input port corresponding to the 3 slots of its SynForm. Those
will serve to build cooperation links with other instances that can provide the constructional content necessary
to fill the slots. It has one output port that can cooperate and link to multiple input ports of construction
instance that use its template to fill in their missing details. The two ports on the left side correspond
to activity input and output port. Here the activity of the construction is 0.5 and reflects its relevance to
the current grammatical processes. (Right) Example of a simple lexical construction instance derived from
the BLUE construction. Note that this construction instance does not have any input port since it does
not require inputs from other construction instances to fill in its details but only links, across WM to the
SemRep instances.
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Figure 4.5: Dynamic coordination between Semantic and Grammatical WM. Concept schema instances
form a semantic representation graph (SemRep) at the center (Semantic WM’s state). Construction schema
instances (boxes) are shown forming C2 network (Grammatical WM’s statem, green cooperation, red compe-
tition). The dashed lines linking constructions to SemRep represent the portion of the SemRep for which each
construction provides a partial meaning-to-form mapping hypothesis. This figure presented the simulated
output of the system corresponding that mirrors the informal example shown in fig. 2.12
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a search tree algorithm cannot be used, it is ill suited to model the adaptive coupling of the Grammatical
WDM’s state to the time dependent state of the semantic representations in Semantic WM: Each modification
of the SemanticWM state would require updating the whole search tree. Moreover a tree search approach
does not fit what is known of the principles that support cognitive processes (captured by Schema Theory).

SemMatch adapts to the TCG focus on incrementality one of the key operations that used by formalisms
defining the processing going from an input to an output as the accumulation of knowledge sources forming
a network of constraints and in particular by unification based language formalism Shieber (2003) (and for
CompCxG FCG, ECG! fall in this category). All of those systems need to define a unification test that,
upon attempting to apply a new source of knowledge, returns the set of variable bindings for which a legal
unification can be performed (Knight, 1989). In TCG however, this operations governs construction schema
instantiation.

If the SemFrame of a construction schema is considered to be a network of free variables with constraints
(on their domain (concept) and their relations (shape of graph)), then SemMatch essentially consists in
finding, the set of valid bindings of those variables onto the SemRep values. This is implemented as finding
a labeled sub-graph isomorphism.

A construction schema is invoked as an instance in grammatical working memory (GrammaticalWM)
each time its semantic pole (SemFrame) matches a part of the SemRep. Such matching indicates that the
construction stored in long term memory is relevant to the ongoing process of building a linguistic expression
of the message.

Invocation can be divided into two sub-processes:

e SemMatch process checks the applicability of a construction schema as a meaning-to-form mapping
given a SemRep. Given the graph structure used as a basis for semantic representations, SemMatch
is defined as a sub-graph matching algorithm with additional label matching. Labels correspond to
concepts and their semantic matching is tied to the associated model of conceptual knowledge. In
fig. 4.6, the shape of the PAS_SVO construction schema’s SemFrame graph matches the SemRep graph
of concept schema instances active in Semantic WM (in general a construction schema’s SemFrame
only matches a sub-graph of the SemRep): they are isomorphic and their labels match. The labels of
the SemRep are equal or hyponyms of their corresponding labels in the SemFrame, e.g. HUMAN is a
hyponym of ENTITY given the model of world knowledge. Given a construction schema, SemM atch
returns the set of all the sub-graph isomorphisms from the SemFrame of the construction to the SemRep
(the SemFrame of a construction schema can match multiple SemRep’s sub-graphs). The SemMatch
can be also expanded so that it returns, in addition to returning a Boolean value reflecting the appli-
cability or not of a construction, an additional continuous reflecting the quality of each matching (it is
done by defining a distance metric on the labels). (See Appendix.C, alg. 2)

e instantiate_cxn uses SemMatch output to generate the construction instances that will be invoked in
Grammatical WM: given a construction schema and SemRep, each sub-graph isomorphism generated by
SemMatch results in the invocation of a construction instance (c.f. fig. 4.6). The initial activation value
of the instance is defined by the schema in LTM but can be modulated by factors such as preference
(see above). (See Appendix.C, alg. 3)

Search for sub-graph isomorphisms is known to be quite a costly operation. However, the relative small
size of the graphs the model is dealing with ensures that the problem remains tractable (Typically, at each
time a SemRep contains less than a dozen nodes and SemFrames are usually limited to a few nodes.).

In fig. 4.1 the construction invocation process is handled by the construction retrieval sub-system (Cxn-
Retrieval(P)).

The semantic match (SemMatch) requirement functions as a filter. The Conceptual LTM is represented
as an input to SemMatch since the conceptual knowledge is necessary for one of the two SemMatch step. A
match between a SemRep subgraph (S) and a SemFrame requires first graph isomorphy, but also matching
between the corresponding conceptual content of the nodes and edges of S and SemFrame. This latter
step requires access to conceptual knowledge since, for example, it allows for semantic matching between a
concept and its hypernyms, etc.

IECG does not handle production
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Figure 4.6: Construction instantiation: SemMatch process. High level view of the construction instance
retrieval and invocation process. In this simplified view, the SVO and PAS_SVO construction’s SemFrames
are isomorphic to the SemRep graph (ENTITY is a hypernym of HUMAN). Those isomorphisms are deter-
mined by SemMatch which results then in the invocation in Grammatical WM of an instance of each of those
construction schemas, each covering the SemRep graph it is isomorphic to (in this case, the whole graph,
dashed grey lines, coverage of edges is omitted for clarity).

Using Group features, the system can require that certain constructions be invoked first (e.g. lexical
construction before argument structure constructions).

In fig. 4.1 the construction invocation process is handled by the construction retrieval sub-system (Cxn-
Retrieval(P)).

4.4.5 Cooperative Computation (C2): Match

TCG needs an algorithm to decide, based on the state of the Linguistic WM (SemanticWM: SemRep +
Grammatical WM: Set of active construction instances) how a newly invoked construction schema instance
can contribute its meaning-form mapping hypothesis, entering in cooperation with other construction in-
stances to improve the existing meaning-form mappings. As it rests on a self-organizing decision process
(search), TCG also needs to build competitions between construction schema instances that carry incom-
patible hypothesis. 2.

Match structures the relations between construction instances in a way that allows the system to bypass
tree search and adopt the C2 approach to cognitive modeling: Match establishes cooperation links where
cooperation is possible, and competition links where instances hypotheses are incompatible, a situation
which, in a search tree, would result in branching.

The constructional information carried by active instances is not merged onto the Linguistic WM state3.
The possibility of cooperations are symbolized by the cooperation links, while the incompatibilities (that
would trigger a branching in the search tree) are symbolized by competition links.

The goal of the Grammatical WM consists in incrementally building mappings to express the semantic
content of the SemRep (itself built incrementally) in a linguistic form. Construction schemas that correspond

2The state of both the Grammatical and the Semantic WM are involved at this stage since for each construction instance,
the free variables of their SemFrame of are now bound (to the SemRep subgraph they cover). Match can also be seen as an
adaptation of a unification test this time applied between a construction instance and the state of the Linguistic WM.

3In this TCG differs from Fluid Construction Grammar
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to relevant meaning-form mapping hypotheses are invoked in Grammatical WM (see above) where they enter
in cooperative computation (C2).

Each construction instance active in Grammatical WM carries a mapping hypothesis of a portion of the
current semantic representation onto a linguistic form. Cooperation emerges between two constructions
whose mapping can be composed to generate a new mapping covering a larger portion of the semantic
content, or refining the mapping. Competition, on the other hand, is triggered when two constructions
represent incompatible mapping hypotheses.

Each construction instance carries an activation value, whose initial value is modulated by the preference
value stored in the schema, representing the idiosyncratic usage preferences of the speaker (to which can
be added a factor reflecting the quality of the semantic match). They organize into a C2 network, whose
dynamics defines at each time step the values of the instances activation values. If a construction instances
activation value falls below a given threshold, the instance is pruned out of the Grammatical WM. The C2
network is therefore intermittently reshaped following either the invocation of new constructions instances
or the pruning of construction instances that lost’ the competitions in which they were involved.

C2 links are built based on the Match operation. Two instances that do not overlap in their coverage
of the SemRep do not form any C2 link. Informally, if two instances overlap in their SemRep coverage, the
core constraint is that one of the constructions (child) needs to provide a SynForm that can (partially) fill
in the missing form information of the other construction (parent).

If a construction instance C; is defined as a mapping from a subgraphs S; C SemRep onto a linguistic
form f; = C;.SynForm, only if two constructions instances C; and Cs are in such relation that S; N Sy #
will they enter in cooperation or in competition since they overlap on the semantic content they map
onto linguistic form. The cooperation and competition process therefore only need to concern itself with
construction instances whose meaning poles map overlapping subgraphs of the semantic representation.

Given two constructions instances C; and Cs with their overlap O = S; N Sy # :

e If O contains a semantic relation (i.e. an edge in the semantic graph) then the constructions neces-
sarily compete. This stems from a particular limitation of the TCG formalism: a given construction
always symbolically fully map the semantic relations it covers onto its syntactic form. The mapping is
implicit (the symbolic links only map SemFrame nodes onto the SynForm), and the use of slot in the
SynForm (thought of as unbound form variables) only allows constructions to left under-determined

the formalization of conceptual entities and not relations 4.

e If O only contains semantic entities (i.e. nodes in the semantic graphs). In this case, in the current
formalisms, two cases emerge.

— Both constructions lexicalize this node (as a phonetic form) in which case the constructions
compete.

— At least one construction does not lexicalize the node (i.e. only map the node onto a slot), in
which case the construction will either cooperate or not form any link. The conditions under
which cooperation occur are detailed below.

Again, the distinction between the two cases reveals the asymmetry in treatment of semantic entities and
relations (nodes and edges) in TCG. A SemFrame semantic relation (edge) is necessarily translated into the
form of this construction. A SemFrame semantic entity (node) however, may or may not be lexicalized as
a phonological form by the construction, as reflected by the fact that the SynForm can include respectively
slots or word_forms.

Matching constraints

Figure4.7 shows portions of two constructions, CNX; and C X N, that overlap on a semantic node Ngey,.
Assuming that those constructions are not already in competition (condition (0), i.e. they do not overlap
also on a semantic relation (see above)), we can define the syntactic and semantic constraints that will govern
the potential creation of a cooperation link (shown here potentially linking Ny to Fy (for simplicity only the
case of CX Ny as parent and of CX N as child is shown). Syntactic and semantic constraints each contain
a type and a Boolean constraint.

4Further development of TCG could lift this constraint.

111



Syntactic Constraints

(Synl) states that link should target a form of type Slot in the parent construction, i.e. that the
parent construction does have a symbolic link mapping the semantic node to the syntactic form
and that the parent construction does not define a phonological form for the semantic node.

(Syn2) states that the child construction class needs to be included in the set of classes that can be
associated with the slot in the parent construction.

Semantic Constraints

(Seml) states that the link should originate from a SemFrame node of type HEAD in the child

construction®.

(Sem?2) states that the concept of the child’s semantic node fits the semantic requirements of the
parent construction’s semantic node. Currently, the fit is decided based on whether or not the
concept type of the child semantic node is subsumed by the concept type of the parent’s semantic
node. However, this is a simplification that serves as a binary proxy for a constraint that should
take into account the distance between child and parent concepts.

(Sem?2) is the semantic counterpart to the (Syn2) constraint. While Syn2 imposes that the child’s con-
struction class fits the parent’s construction’s slot class constraints, Sem2 imposes that the concept of the
child semantic node fits the semantic requirements of the parent semantic node. For a child construction
to be able to contribute its content to a parent construction by linking to one of its slot, there are both
syntactic class and semantic constraints. This reflects an important aspect of construction grammar: syntax
and semantics are not disjoint. The example of the verb alternation contrast between the Theme-object con-
struction “X V'Y in/on Z” (Cxnl) and the Goal-object construction “X 'V Z with Y” (Cxn2) illustrates
this point. They are both abstract argument structure constructions but their semantic requirements for the
verb slot V vary.

e (1) “John pours water in the plant”

e (2) *“John pours the glass with water”

1’) *“John filled water in the glass”

(
(
(
e (2’) “John filled the glass with water”

Cxnl accepts “pour” but not “fill” in its verb slot, while the reverse is true for Cxn2. Both share the
same syntactic class, and are very close in term of general conceptual/world knowledge. But they differ in
the fact that “pour” only specifies the path to the object and not the change of state of the objet (if the
glass has a hole at the bottom, one can pour water in it and not fill it, or one can pour water in an already
full glass), “fill” only specifies the change of state, not the manner by which it is achieved (one can fill a
glass with water by dipping it into a pool of water or by pouring water into it). This difference between the
two concepts “pour” and “fill” reveals the difference in semantic constraints associated to the V slot in Cxnl
and Cxn2.

One could consider the class of a construction plus the concept of its HEAD to form a syntactico-semantic
class for the construction that is the one that matters when the construction is used in relation to other
construction.

I keep the separation between rather syntactic-like class and the semantic HEAD SemFrame node concept
to clearly indicate the importance of construction based semantic constraints on the building of construc-
tion assemblages (for a slot, the semantic constraint comes from the SemFrame node is its linked to). I
have discussed elsewhere how constructional semantics can be participate in “light semantic” operations (as
opposed to “heavy semantics” operations when the conceptual knowledge is put to full use) that should
be dissociated, from a neurolinguistics perspective and in the case of comprehension, from more classically
syntax like operations (Barres and Lee, 2013).

5The HEAD node in a construction represent the semantic type of the construction. For now the implementation only allows
for endocentric construction, but the inclusion of exocentric constructions is being investigated
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Figure 4.7: Syntactic and semantic constraints on match yielding a cooperation link. Synl and Seml are
obligatory constraints (type constraints) while Syn2 and Sem?2 are qualitative constraints. ((Synl) includes
the assumption that a symbolic link exists between N and the SynForm of CX Ny.)

Using the definition of dgy, and dsen, below, (syn2) can be restated as dgyn(cxng, F1) > 0 and (sem?2)
can be restated as dsem(Na, N1) > 0. This formulation highlights the fact that future implementation of
TCG will move away from (syn2) and (sem2) as obligatory constraints and consider those as qualitative
constraints where dgy, and dgen will be treated as more classic distance functions, and will return analogical
values reflecting the quality of the match between syntactic and semantic features. These metrics will then
be used to impact the strength of the cooperative links created between constructions, allowing for finer
grain grammatical dynamics.

1 cxn.class € slot.classes

dsyn(Cﬂﬁn, Slot) = {

0 otherwise

1 Nj.concept C Ny.concept

dsem N 7N = .
(N1, N2) {0 otherwise

match returns a categorical value match_cat defining the nature of the relation between the mapping
hypotheses put forward by inst; and insts respectively®(See Appendix.C, alg.4).

1 = COOPERATION
match_cat = { 0 = NO RELATION
—1 = COMPETITION

In the case of cooperation, match also returns the relevant data to generate the cooperation links between
the two instances, as well as, for each link a match_qual value that reflects the result of constraints (Syn2)
and (Sem2). As mentioned above, for now those are categorical constraints, but the system is already set
up to handle them as qualitative constraints.

The comp_link algorithm is called by match to check the competition related constraints for a given
point of semantic overlap between two construction instances. There is competition if both construction
instances propose a phonetic form for the point of semantic overlap. Importantly, in TCG there is the
possibility for a SemFrame node not to be symbolically link to any element of the SynForm. In this case,
the node is considered to be implicitly fully mapped onto the form (e.g. in the IN.COLOR construction).
(See Appendix.C, alg. 5). Note that the case of an overlap on an edge (which leads to competition) is, for
reason of simplicity, directly handled by the match algorithm.

The coop_link algorithm is called by match to check the cooperation related syntactic and semantic
constraints for a given point of semantic overlap between two construction instances. If a link is found, it
returns both the link as well as the match_qual value. (See Appendix.C, alg. 6).

6Note that match(insty, insta) = match(insta, insty).
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The SemMatch process is exemplified in Figure 4.8. The bottom example shows two constructions that
overlap on the WOMAN SemRep node. However, in PAS_SVO, the SemFrame node that covers WOMAN
(ENTITY) is linked to a slot and therefore linguistic information to express the semantic content of WOMAN
is missing. WOMAN_1 also covers the WOMAN SemRep node. In addition, it can serve to fill in the slot
in PAS_SVO since: WOMAN_1 has a class that matches the class requirement of the slot (N) (SynForm
requirement), WOMAN node in the SemFrame of WOMAN_1 is semantically compatible with the ENTITY
node in PAS_SVO (SemFrame requirement) to which the slot is symbolically linked, and finally WOMAN
in the SemFrame of WOMAN_1 is a HEAD node. Match therefore results in the creation of a cooperation
link between the two constructions (green) that link WOMAN_1 to PAS_SVO through the relevant slot for
which WOMAN_1 provides the missing phonological content.

The top-left figure presents a situation largely similar to the previous one with the exception that in this
case, both constructions associate the SemFrame node that covers WOMAN with a phonological form (and
not a slot). Here, this represents the case of two synonymous lexical item competing to express a concept”.
In this case Match creates a competition link between the two constructions instances.

The last example, on the top-right, presents the case of two argument structure constructions that
overlap on a subgraph and not only on a single node. This necessarily results in competition since, as we
have mentioned above, it is implicit in the formalism of TCG that edges of the SemFrame are symbolically
represented in the SynForm (i.e. there is not equivalent of slot” variables for edges).

The cooperative computation dynamic within the Grammatical WM is that prescribed by Schema Theory
as described above. External activation is received by the construction instances from the Semantic WM on
the basis of the cross WM links defined above (see above, fig.4.4).

As an example, in Figure 4.5 WOMAN_227 (“woman”) and WOMAN_228 (“lady”) construction schema
instances compete as synonymous lexical constructions. At the more abstract level of argument struc-
ture/voice: PAS_SVO_225 and SVO_224 instances compete as they both build on top of the same portion of
the SemRep but express the agent-patient semantic roles in different ways in their SynForm.

Each construction instance active in Grammatical WM carries a mapping hypothesis of a portion of
the current semantic representation onto a linguistic form. Cooperation emerges between two constructions
whose mapping can be composed to generate a new mapping covering a larger portion of the semantic
content, or refining the mapping. Competition, on the other hand, is triggered when two constructions
represent incompatible mapping hypotheses.

(C2 links are created incrementally: each time a new construction instance is invoked it is matched against
the ones that are already active in the Grammatical WM. As it is shown in ch. 2) there exists a deep relation
between incrementality at the visuo-attentional, semantic, and grammatical level (see fig. 2.15 and fig. 2.16).

Construction schema instances that represent incompatible meaning-form mapping hypotheses enter in
competition through mutually inhibitory links. Two construction schema instances that can cooperate, each
serving as a context favoring the use of the other, enter in cooperation through excitatory links. The links
therefore reflect rule like symbolic processes that have defined the relationship between construction schema
instances (see sec. C.1.2).

C2 dynamics

We build on the theory of cognitive level hybrid models that have operationalized symbolic processes or
representations manipulations using dynamical systems, in particular using (localist) cognitive networks
(Graded Random Adaptive Interactive (non-linear) Networks (GRAIN) (McClelland, 1993) and/or Paral-
lel Distributed Processing (PDP) approaches (Rumelhart and McClelland, 1986)), or Cooper & Shallice’s
schema theory (a different version of schema theory focusing on the organization of motor control)(Cooper
and Shallice, 2000, 2006; Cooper et al., 2005). As mentioned above and in the previous chapter (see sec. 1.4
and Ch. A), the general cooperative computation approach follows the McClelland’s principles of cognitive
theory. The main difference is that in our Schema Theory setting, the C2 network is not predefined but
change topology as new instances are invoked while some are pruned out. However, the justification put
forward by McClelland for the modeling of cognitive dynamics remain valid.

7Although it can be claimed that no two constructions are synonymous (principle of no synonymy (Goldberg, 1995)), this
only holds for an idealized speaker, not at the level of performance of individual speakers that we consider.
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Figure 4.8: Examples of matching outcomes between construction instances. Highlighted part of the SemRep
are covered by both constructions. Dashed lines across WMs indicates the relations between the construc-
tions’ SemFrames and the SemRep. The Match process takes two constructions as input and generates as
output either a cooperation link (green) or a competition link (red). The case in which no link is created is
not shown (case in which constructions express subgraphs). (See main text for details)
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All schema instances have continuous valued activation levels. They form a dynamic system of interacting
activations, each instance functioning as a leaky integrator, building on the Leaky Competing Accumulator
(LCA) model (Usher and McClelland, 2001, 2004; Bogacz et al., 2007; Tsetsos et al., 2011).

Cooperation links are excitatory while competition links are inhibitory. The weight of those respective
links is fixed and defined by the Grammatical WM. This type of competition has been often used to perform
“contrast enhancement” (Grossberg, 1982), favoring the dynamic emergence of a “figure” on a “background”,
the figure here being a construction instance assemblage that fulfill the goal of the Grammatical WM. It
suppresses instances with weak activities and the amount of inhibition each instance receives reflects how
much alternatives are supported (relative weighing process).

In the current implementation, competition links are always symmetric (bidirectional with similar weights)
while the cooperation links are asymmetric (unidirectional).

The sigmoid function o is used as non-linearity with its shape fixed by o(—o00) = 0, o(c0) = 1, and two
parameters: o(0) that defines the activity of the schema instance at rest, in absence of any input, and o (0)’
that can control the steepness of the sigmoid (influencing the sensitivity of the activity to small inputs). The
full equations are given in Appendix.

The convergence of the C2 dynamic towards a single solution (or a stable state in the case of a stochastic
system) cannot be guarantee since the system is not necessarily symmetrical in its connections and the
topology of the network changes®.

For a construction schema instance 4, active in a WM as part of C2 network, its activity Act! is updated
following a leaky integrator equation:

Acti™ = aAct! + (1 — a)o(Inputt + noise®) (4.1)

with « defining the characteristic time of the WM system « = (1 — 771), o the logistic function, and
with a Gaussian noise noiset ~ N(O, noisestq)
Input! is defined as:

Inputt = wr{ Z Weomyp + Acth, + Z Weoop * Actz-} + Z We - Ext’ze)i) (4.2)

kecomp(i,k) j€coop(i,j) ecext(i)

Eztf ¢7) Fepresents activation that an instance 7 receives from outside the working memory by subsystem
e.

Here, the competition, cooperation, and external weights are taken to be the same for all instances within
a WM ?.

Wegt balances the strength of internal and external activation inputs. weomp balances the strength of
competition and cooperation. The parameters of the logistic function ¢ are chosen so that, in addition to
o(0c0) =1 and o(—00) = 0, 0(0) = Actrest the activity in the absence of input. The remaining degree of
freedom can be used to set o(zg) = of, in order to define the steepness of the logistic function. In this case
the dynamics of the leaky integrator is defined by the parameters (&, Arest; 00, Weomp, {We },n0ISEsq). In
addition, 0p,yne defines the pruning threshold. A constructions whose activation values falls below 0pyyne is
pruned out of working memory. Each WM system sets its own set of parameters.
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