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Abstract How does the language system coordinate with our
visual system to yield flexible integration of linguistic, percep-
tual, and world-knowledge information when we communicate
about the world we perceive? Schema theory is a computation-
al framework that allows the simulation of perceptuo-motor
coordination programs on the basis of known brain operating
principles such as cooperative computation and distributed
processing. We present first its application to a model of
language production, SemRep/TCG, which combines a seman-
tic representation of visual scenes (SemRep) with Template
Construction Grammar (TCG) as a means to generate verbal
descriptions of a scene from its associated SemRep graph.
SemRep/TCG combines the neurocomputational framework
of schema theory with the representational format of construc-
tion grammar in a model linking eye-tracking data to visual
scene descriptions. We then offer a conceptual extension of
TCG to include language comprehension and address data on
the role of bothworld knowledge and grammatical semantics in
the comprehension performances of agrammatic aphasic pa-
tients. This extension introduces a distinction between heavy
and light semantics. The TCG model of language comprehen-
sion offers a computational framework to quantitatively ana-
lyze the distributed dynamics of language processes, focusing
on the interactions between grammatical, world knowledge,
and visual information. In particular, it reveals interesting im-
plications for the understanding of the various patterns of
comprehension performances of agrammatic aphasics mea-
sured using sentence-picture matching tasks. This new step in

the life cycle of the model serves as a basis for exploring the
specific challenges that neurolinguistic computational model-
ing poses to the neuroinformatics community.
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Talking about the World: From Schema Theory
to Template Construction Grammar

Linking the Eye and the Mouth

Understanding the language system requires understanding not
only the processing of grammatical constraints but also how
such processes are integrated with evolutionarily more con-
served systems that support our sensory-motor interactions
with the world. In this paper, we focus on the relation between
vision and language. In a visual scene description task, a
subject simultaneously gathers information from the image,
fixating elements that become salient based on both bottom-
up features and top-down hypotheses, and starts generating
linguistic output based on relevant visual information. Under
pressure to communicate she might start producing fragmented
utterances while in more relaxed conditions the message might
become composed of well-formed sentences packaging content
collected through many fixations. Turning to comprehension, a
patient suffering from brain lesions impairing her capacity to
use grammatical cues can compensate in some cases by relying
on her knowledge of the world to assign linguistic inputs to
their correct semantic role and correctly identify what picture
matches the sentence she has just heard. We offer a
neurolinguistic computational framework that tackles such be-
havioral and neuropsychological data. Part 2 presents a com-
putational model for generating flexible scene descriptions
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from visually extracted semantic content. In Part 3, the model is
conceptually extended to comprehension with a focus on the
case of agrammatic aphasics. Taking a step back, Part 4 dis-
cusses more generally the role that neuroinformatics can play in
bolstering neurolinguistic modeling efforts.

Introducing Schemas

We build on a version of schema theory (Arbib 1981) in which
instances of perceptual schemas (enabling the recognition of
specific objects, situations or events in the world, as well as
parameters relevant to action) and motor schemas (akin to
control systems for some course of action) compete and
cooperate in the brain of an organism constantly engaged in
an action-perception cycle through which it makes sense of,
and interacts with, its changing environment. Distributed pat-
terns of cooperative computation – competition and coopera-
tion between schema instances – yield patterns of activity that
commit the organism to one course of action rather than
another. Schema theory provides a level of computational
modeling that aims at facilitating later transfer to neural level
implementation. It is both symbolic (whether or not a schema
has been instantiated) and subsymbolic (the activity level and
parameter values of current schema instances). It allows for
the distinction between a feature implicit in the operation of a
schema and the activation of a schema that makes that feature
explicit. For example, the color of an apple may enter into
recognizing an object’s shape en route to identifying it as an
apple whether or not it enters explicit awareness that the apple
is red or green. An initial schema-based model becomes part
of neural schema theory if it addresses data from lesion
studies, brain imaging, or single-cell recording to help us
understand how this behavior is mediated by the inner work-
ings of the brain. In this paper, we extend earlier work (Arbib
et al. 1987; Arbib and Lee 2008) applying schema theory to
language processing.

The computational architecture of the VISIONS system
(Draper et al. 1989; Hanson and Riseman 1978) for under-
standing visual scenes offered useful insights into cooperative
computation. Low-level processes extract visual features that
contribute “bottom-up” to an intermediate representation of a
visual scene − including contours and surfaces tagged with
features such as color, texture, shape, size and location. Per-
ceptual schema instances then process different features of
regions of the intermediate representation to form confidence
values for the presence of objects like houses, walls and trees –
and may initiate further processing “top-down” within the
intermediate representation to resolve ambiguities. Cooperative
computation between schema instances may yield a “winning
coalition,” with the suppression of previously active instances,
which provides (at least for a while) the interpretation of the
scene. The knowledge required for such interpretation is stored
in long-term memory (LTM) as a network of schemas, while the

state of the interpretation of a particular scene unfolds in
working memory (WM) as a network of (parameterized) sche-
ma instances (Fig. 1). Note that this working memory is not
defined in terms of recency (as in short term memory) but
rather in terms of continuing relevance.

VISIONS provides an example of how a schema network
can be used to model some portion of world knowledge (here
objects, how to recognize them from low level perceptual
features extracted from an image, and how they are related
spatially to their parts or frequently associated objects) and
how this knowledge can be retrieved on the basis of activation
values of already instantiated schemas.

The HEARSAY-II speech understanding system (Lesser
et al. 1975) also adopted the perspective of cooperative com-
putation even though implemented on a serial computer.
HEARSAY uses a dynamic global data structure called the
blackboard, partitioned into surface-phonemic, lexical and
phrasal levels. Processes called knowledge sources act upon
hypotheses at one level to generate hypotheses at another.
Arbib and Caplan (1979) discussed how the knowledge
sources of HEARSAY, which were scheduled serially, might
be replaced by schemas distributed across the brain to capture
the spirit of “distributed localization” of Luria (e.g., 1973).
Today, advances in the understanding of distributed computa-
tion and the flood of neurolinguistic neuroimaging and behav-
ioral data call for a new push at neurolinguistic modeling
informed by the understanding of cooperative computation.
Using the visual world paradigm, psycholinguistic studies are
able to present linguistic stimuli to a subject who is simulta-
neously looking at a visual scene while recording the subject’s
eye movements. Altmann and Kamide (1999), among others,
showed how subjects could incrementally combine linguistic,
visual, and world knowledge information during a comprehen-
sion task. Faced with visual display showing a cake, two toys,
and a boy, the subjects were faster to fixate the cake upon
hearing the verb “eat” in the sentence “the boy will eat …”
than upon hearing the more general verb “move” in the sen-
tence “the boy will move….”. For us the challenge is therefore
to link language processes to the perception of “realistic” visual
scenes while also accounting for the role of world knowledge.
But first, we need to introduce construction grammar.

Construction Grammar

Construction grammar comes in varied forms (Bergen and
Chang 2005b; Croft 2001; De Beule and Steels 2005;
Dominey et al. 2006b; Goldberg 1995; Kay 2002; Kay and
Fillmore 1999). What is common to these various efforts is
that grammar is not based on a small set of purely syntactic
rules but instead on constructions which, like items in the
lexicon, combine syntactic, semantic and even in some cases
phonological information. In the framework of construction
grammar, He kicked the bucket is ambiguous because it has
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two parsings. One yields an instance of the general formulaHe
X’d the Y whose overall meaning varies with the meanings of
X and Y. The other yields a term in which no substitutions can
bemade for kick and bucket and the meaning has no relation to
those of kick or bucket (“He died”). As Hurford (2011,
Chapter 4) notes, there is evidence that on hearing an idiom,
both the overall meaning (e.g. die) and the meanings of the
individual parts (e.g., kick and bucket) can be primed,
suggesting redundant storage. This fits with our general view
of competition and cooperation of schemas in that the initial
activation of constructions for both parsings can have a prim-
ing effect even though just one eventually wins the competi-
tion determining our understanding of the sentence that con-
tains the idiom.

In the He X’d the Y construction, the role of X and Y can
be filled by almost any transitive verb (for X) and noun (for
Y). Conversely, in the kick the bucket construction, some
syntactic variation is possible but no substitutions may be
made for kick or bucket. However, a core empirical founda-
tion of construction grammar stems from closer analyses of
constructions that revealed a continuum between rather syn-
tactic and rather lexical constructions, with many construc-
tions being sui generis in terms of the constraints they im-
pose on their parts. For example, the constraints on Y and Z
in the Goal-object construction X’d Y with Z as in “Sam filled
the glass with water” and the Theme-object construction X’d
Z in Yas in “Sam poured water in the glass” cannot be simply
accounted for in terms of general syntactic classes. Indeed
fill/drench/soak/saturate/infuse work with the Goal-object
and not with the Theme-object construction and vice versa
for pour/drip/dribble/spill. Such richness in constructional
behavior is what led cognitive linguistics to adopt construc-
tions to represent grammatical knowledge, abandoning the

duality between lexicon and grammar, as well as between
syntactic and semantic components.

Our goal is to show how language schemas can be defined
as constructions and from there offer a neurocomputational
model of language processing. Working within schema theo-
ry, the goal of our model is to show how cooperative compu-
tation of construction schemas can generate dynamic control
structure for production and comprehension of language. Such
a perspective distinguishes our approach from other
implementations of construction grammars that have focused
on the role of perceptuo-motor simulations in language com-
prehension (Bergen and Chang 2005a), diachronic language
evolution in embodied robots (Steels and De Beule 2006), or
language learning in a brain anchored connectionist imple-
mentation (Dominey and Boucher 2005; Dominey et al.
2006a). We share however with the latter two a focus on the
language-vision interface.

Template Construction Grammar (TCG) as a Model
of Visual Scene Descriptions: SemRep/TCG

We now introduce SemRep and TCG, building on the work
of Arbib and Lee (2008) and Lee (2012) to provide a visually
grounded version of construction grammar. What is worth
stressing, however, is that our approach is not an attempt to
apply directly a construction grammar formalism to compu-
tational neurolinguistics– rather, it is based on the realization
that early approaches to a schema-theoretic linguistics (e.g.,
Arbib et al. 1987) can indeed be understood by interpreting
the type of schemas that were then called templates as being
examples of constructions as broadly construed within var-
iants of construction grammar.

Fig. 1 The Visual Working
Memory (WM) of VISIONS
interprets the current scene by a
network of parameterized
instances of schemas from Long
Term Memory (LTM). These
schema instances are linked to
the visual world via an
intermediate database (here
represented by the image feature
groupings) that offers an
updatable analysis of the division
of the world into regions that are
candidates for interpretation as
agents and objects, possibly in
relation with each other
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Arbib and Lee (2008) introduced SemRep as a hierarchical
graph-like “semantic representation” designed to link the se-
mantic content of sentences to the representation of visual
scenes. SemRep is a representation abstracted from the sche-
ma assemblages such as those generated by VISIONS. Where
the latter defines a “cognitive structure,” a SemRep defines the
associated “semantic structure”. However, the following dis-
cussion postulates an extended visual system in which actions
objects are recognized as well as and relations (clearly, this
depends on the set of schemas embedded within the system
for visual scene perception).

A given scene can be perceived in many different ways;
SemRep abstracts from the current pattern of schema activa-
tion a set of nodes and relations which constitute one possible
semantic structure for the current scene. The properties of a
recognized entity (an object or an action) are converted into a
node linked to the perceptual schema instance in the schema
assemblage while the semantics of a relationship between
entities (including semantic roles for an action) are converted
into an edge. Each node or relation is attached with a concept
which may later be translated into words by the language
system. However, concepts are not word labels but more
abstract descriptors, allowing the same graph to be expressed
in multiple ways within a given language. Consider the spe-
cific scene shown on the left of Fig. 2. Here, the concept
DRESS could yield a variety of phonological forms such as
“dress” or “frock.” A SemRep expresses semantic relations
but with no commitment to word choice, and can thus be the
basis for description in any language once the appropriate
grammar and lexicon are deployed. As Fig. 2 makes clear, a
single scene can have many SemReps. Each SemRep encom-
passes one analysis which captures something of the agents,
objects, actions and relationships that may be present in the
one (possibly temporally extended) visual scene.

A schema instance in the visual analysis may be associated
with a number of parameters, some of which (such as size,
shape, orientation and location) may be relevant to possible

interactions with what the schema represents and yet not be
included in a verbal expression. We thus postulate that
SemRep makes explicit very few parameters and can direct
requests to Visual Working Memory when more information
is required for explicit cognitive processing or verbal
expression.

We now turn to the schema-based model of a grammar
mapping the SemRep content onto verbal expression. Our
version of construction grammar for language production,
Template Construction Grammar (TCG), was already intro-
duced in Arbib and Lee (2008), and Lee (2012). TCG adopts
two major policies common to all construction grammar
frameworks: (1) each construction specifies a mapping be-
tween form and meaning, and (2) the systematic combination
of constructions yields the whole grammatical structure. But
TCG also provides two key additions: (1) The semantic
structure of an utterance is given as a SemRep, and (2) each
construction is viewed as a language schema and therefore
endowed with all the dynamic properties of schemas. Such
additions turn construction grammar into a dynamic system
of representations that can enter into cooperative computa-
tions and flexibly map visual semantic content (SemRep)
onto a verbal linguistic output.

A construction in TCG is defined by a triple (name, class,
and template):

& Name is the name of the construction. It is not involved
in processing and is only there for reference purposes.

& Class specifies the “category” of the result generated by
applying the construction. It determines for which other
constructions this result could serve as an input. In the
examples considered here the class is chosen for simplicity
as a conventional syntactic category, such as “noun” or
“verb”, for the head of the phrase which is returned on
applying the construction. In general, though, the class of
a construction is “syntactico-semantic” and based on usage.
There is no a priori constraint on the number of classes

Fig. 2 Left: A picture of a woman hitting a man (original image from
“Invisible Man Choi Jang Soo”, Korean Broadcasting System). Right:
Three example SemRep graphs that could be generated from the scene.
Note: the words on the nodes are labels of convenience for yet-to-be-

verbalized concepts. These SemReps might yield such sentences as “a
woman hits a man”, “a woman is wearing a blue frock”, or “people are
fighting outside”
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(Croft 2001) - minimizing the number of categories does
not seem useful from a neurolinguistic perspective since the
brain codes great amounts of information, often in a redun-
dant way.

& Template defines the form-meaning pair of a construction.
It has two subcomponents, SemFrame and SynForm that
correspond to the meaning and form part of the construc-
tion, respectively.

– SemFrame (semantic frame) represent the meaning
part of the construction. It is defined as the part of a
SemRep graph that the construction will “cover”. The
SemFrame also specifies the “head” components which
act as the representatives of the whole constructionwhen
forming hierarchy with other constructions.

– SynForm (syntactic format) represent the form part
of the construction. It consists of a series of words or
morphemes, and slots which specify the classes of
constructions that can fill them. A given slot repre-
sents non-phonological requirements imposed by
the construction on its more schematic parts. It con-
veys construction-specific grammatical constraints
that include both semantic constraints defined by
the coupled SemRep element in the SemFrame, and
syntactic constraints that are specified by the spe-
cific classes associated with the slot.

The lexical constructions at the bottom of Fig. 3 exem-
plify the way in which the concept associated with a single
node or edge of the SemRep can ground the selection of a
word to express that concept. The constructions at the top of
Fig. 3 move up the hierarchy to cover larger and larger parts of
the SemRep. Thus, the IN_COLOR construction has the

interesting property that it must recognize the node for
CLOTHING but only uses it to license the construction which
yields utterances like pretty woman in blue,where the nodes for
WOMAN and PRETTY have already been covered by another
construction to yield the phrase pretty woman to fill the first slot
in IN_COLOR, which is linked to the node HUMAN.

During production, a SemRep may yield one or more utter-
ances as TCG finds ways to “cover” the relevant portion of the
given SemRep with a set of “small” subgraphs, where each is
chosen such that there is a construction available in the language
considered to express the content of that subgraph. The
SemFrame parts of the constructions’ templates are used to
select constructions that matchwhole or subparts of the SemRep
graph, and can therefore participate in expressing some of its
content. Thus, constructions are applied recursively, starting
with lexical constructions, which have no slots (Fig. 3, bottom),
and then by applying higher-level constructions (Fig. 3, top) in
such a way that their SynForms match the results of earlier
application of constructions (see Fig. 4 for an example).

In this section, we treat lexical constructions the same way
we treat other constructions. However, this does not mean that
lexical and more schematic constructions are neurologically
equivalent: consider cases of double dissociation in language
production between anomia (patient has difficulties in naming
object or actions) and agrammatism (patient has difficulties
producing syntactically correct utterances) (Goodglass 1976).

The scheme of VISIONS may therefore be lifted to a similar
structure (Fig. 5) in which a Linguistic Working Memory (the
Working Memory that keeps track of the state of the system
resulting from the application of constructions to the current
SemRep) provides the workspace for the operation of construc-
tion selection and attachment, thus providing a dynamic set of

Fig. 3 Examples of constructions The name and class of each con-
struction appears above it. Each construction includes a SemRep-like
graph with either generic or specific labels on the edges and nodes, with
each linked to a text or an empty slot. The node labels correspond to
concepts, not words. Top: Higher-level constructions used to encode
grammatical information. For each slot there may be restrictions as to
what can serve as slot fillers. The head of each construction is marked
with a thick-line (e.g. the node HUMAN in IN_COLOR). The node

marked with a dashed-line (e.g. the ENTITY nodes in SVO) represents
a “shared” element. A shared element can overlap with other elements
(of other constructions) without conflict when covering a SemRep,
allowing combination between constructions to happen at that
overlapping area. Bottom: Constructions that correspond to elements
in the lexicon, replacing a concept (small caps) with a word or, not
shown here, phrase (lower case)
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hierarchically organized construction structures with varying
degrees of confidence.

Figure 5 shows two systems running in parallel. During
production of a description, a number of constructions are
activated simultaneously to build upon the unfolding SemRep.
Constructions cooperate and compete with each other in order
to produce a verbal description of a scene. The language
system, which uses the linguistic working memory, applies
constructions on SemRep hierarchically and reads off the
resulting formed sentence or sentence fragments. The vision
system concurrently interprets the scene and updates the
SemRep. As Spivey et al. (2005) note, the visual environment
can be treated as an external memory with eye movements
being the typical access method. When necessary, the language
system may generate requests for more details from the vision
system. Constructions are applied based both on the “current”
SemRep and on the state of the Grammatical WM, where there
are a number of partially (or fully) created construction assem-
blages. The system produces utterances as soon as some thresh-
old is reached. A speaker with a low threshold may produce
“sentence fragments”, while one with a high threshold may
tend to talk in complete sentences. The sentence forming
process is both: (1) incremental since new constructions are
constantly being applied according to the current conceptual
representation, SemRep, and (2) hierarchical since construc-
tions may be applied atop other constructions to form a

hierarchical organization anchored at its base directly on the
SemRep abstracted from the visual processes.

In his thesis (Lee 2012) and in two companion papers,
Jinyong Lee presents the implementation of TCG for visual
scene description in considerable detail (Lee In preparation a)
and then presents data on the utterances and eyemovements of
subjects as they describe complex natural visual scenes, show-
ing how time pressure can “lower the threshold” resulting in
fragmentary rather than well-formed utterances and
explaining these results within the framework of the
SemRep/TCG model (Lee In preparation b).

Bymaking explicit howmechanisms for describing a scene
using words parallel those for recognizing what is in the scene,
Fig. 5 illustrates the claim that much is adapted or exapted
from visual perception and motor activity to support the
cognitive abilities involved in language processing. However
much remains to be done in order to understand what exten-
sions of the basic primate brain architecture were required to
yield a language-ready brain (Arbib 2012).

Template Construction Grammar as a Model
of Comprehension

We propose a conceptual extension of TCG as a model of
language comprehension. Our goal is two-fold: (1) to incorporate

Fig. 4 An illustration of how a grammatical structure is built in TCG.
When the semantics of the “head” components of a construction (repre-
sented as nodes with thick lines) is matched with the associated semantics
of the slot that the construction fills in (e.g. ENTITY and WOMAN in
combination of ADJ_NOUN and WOMAN construction) and the class of
the construction is matched with one of the classes specified in the slot (e.g.
N ofWOMAN construction and [NP, N] of the second slot of ADJ_NOUN
construction), syntactic combinations between constructions (represented
by dashed-line arrows) are made. The head components of the combining

constructions act as the “pivot” in the combination of the three construc-
tions (WOMAN, ADJ_NOUN, and SVO) as they play a role as the
representative components of the constructions that fill into the slot of
other constructions (the ENTITY nodes are successively replaced by the
WOMAN node through the syntactic linkage as represented by the dashed-
line) – e.g. in forming the phrase pretty woman, the head node WOMAN
and the associated construction becomes the head of the phrase, woman.
Note that different constructions may compete and cooperate to cover a
given SemRep which can thus give rise, in general, to different utterances
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the role that world knowledge plays in the incremental generation
of semantic representations during comprehension, and (2) to do
so in a way that accounts for neuropsychological data on com-
prehension performance in aphasic patients who display certain
forms of agrammatism. We specifically focus on the perfor-
mances of agrammatic aphasics in sentence-picture matching
tasks during which the patient is asked to decide whether a
sentence he hears matches a visual scene.

Comprehension Patterns of Agrammatic Aphasics

Agrammatic aphasics are patients suffering from brain le-
sions that result in the deterioration of their capacity to speak
in a grammatically correct fashion. Their disfluent speech
production patterns and agrammatism have historically been
closely associated with Broca’s aphasia, although there is no
one-to-one link of symptoms with specific lesion sites (and in
particular Broca’s area). In contrast to a relatively unimpaired
capacity to use the correct content words to carry out their
message, agrammatic aphasics tend to omit function words,
verbal inflections, etc. Caramazza and Zurif (1976) were
among the firsts to show that agrammatic aphasics could also

be impaired in their capacity to make use of syntactic cues
during language comprehension. They found that Broca’s
aphasics were no different than normal subjects when asked
to match a picture with canonical active sentences such as “the
lion is chasing the fat tiger”, but were no better than chance for
center-embedded object relatives such as “the tiger that the
lion is chasing is fat”. However, performances of Broca’s
aphasics was restored to the level of normal subjects for object
relatives when world knowledge cues were available to con-
strain the sentence interpretation as in “The apple that the boy
is eating is red”. This latter result led the authors to hypothe-
size a neuropsychological dissociation between two compre-
hension processes: a “heuristic” system based primarily on
world knowledge information and an “algorithmic” system
relying mainly on syntactic information. Sherman and
Schweickert (1989) replicated the experiment while control-
ling for the possible combinations of syntactic cues, world
knowledge plausibility and, importantly, picture plausibility.

Since this seminal work was published, it has been shown
that agrammatic production does not necessarily entail
agrammatic comprehension and that the comprehension per-
formances of agrammatic aphasics appear quite heterogeneous.

Fig. 5 The structure of our model of scene description. It echoes the
interaction of Visual WM and Long Term Memory (LTM) in VISIONS
(see Fig. 1), but incorporates the language system adding a Linguistic
WM and Grammatical knowledge. Based on visual attention and com-
municative goals, the system extracts a SemRep in Semantic WM from
the perceptual schemas active in Visual WM to capture key entities and
relations from the scene, thus discarding many details from visual per-
ception less relevant for verbal description. In Grammatical WM, TCG
then can apply lexical constructions to associate nodes with words, and
higher-level constructions to build either directly on nodes in SemRep or

on an already partially completed construction assemblage. The Gram-
matical WM holds a hierarchical covering of the current SemRep by
iterated applications of constructions from Long Term Memory – it pro-
vides not only a Working Memory for construction applications but also
allows an utterance to be read off at any time. Just as VISIONS allows
VisualWM to request more data from low-level processes, our model link
the language system allows the SemRep to be updated by requesting
information from the vision system when completion of an utterance
requires further attention to the visual scene
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Moreover, the very notion that agrammatism reflects the im-
pairment of an identifiable function of a syntactic system (as in
the Trace Deletion Hypothesis of Grodzinsky 2000) is strongly
challenged by the diversity of comprehension performances. In
their meta-analysis of 15 studies published between 1980 and
1993 that reported agrammatic aphasics’ comprehension per-
formances on sentence-picture matching tasks and included
contrasts between active and passive constructions, Berndt
et al. (1996) found that the 64 unique data sets (for 42 patients)
could be clustered into three groups of approximately equal
size, each reflecting a distinct comprehension pattern: (1) only
active constructions are comprehended better than chance, (2)
both active and passive constructions are comprehended better
than chance, (3) both structures are comprehended no better
than chance. So far none of the theories linking agrammatism
to a specific deficit in syntax processing has been able to
account for this variety in performances (for a discussion of
the possible role that group selection played in generating this
variety see (Berndt and Caramazza 1999; Zurif and Piñango
1999)). Rather than conclude that agrammatism does not con-
stitute a useful neuropsychological syndrome for the under-
standing of the neural and cognitive structure of the language
system (Caramazza et al. 2005) we suggest that this diverse set
of lesion-behavior data points provides a good target for a new
neurocomputational approach (including in particular the fact
that Broca’s aphasic patients, for whom the lesions tend to be
localized in the left-anterior cortex, seem to display only the
second pattern of comprehension (Grodzinsky et al. 1999), but
we leave the problem of the neural anchoring of the model for
subsequent work).

Importantly the second conclusion of Caramazza and
Zurif (1976) regarding the role world knowledge plays
alongside syntax is largely admitted as a non-controversial
empirical fact confirmed by subsequent studies (Ansell
and Flowers 1982; Kudo 1984; Saffran et al. 1998;
Sherman and Schweickert 1989). We seek, then, to extend
SemRep/TCG to provide a model of language comprehen-
sion that includes the possibility of selectively impairing
various aspects of grammatical processing while leaving
world knowledge processes involved in comprehension
relatively unimpaired.

Light and Heavy Semantics

We cannot yet provide a comprehensive explanation of the
heterogeneous performances of agrammatic aphasics but do
show how a dynamic, schema-based model can be used as to
study some key aspects of these data sets. The focus of TCG
on the language-vision interface offers a platform well suited
to simulate sentence-picture matching tasks. We adopt a two-
route approach to comprehension, with a world knowledge
route that may be left more or less intact while lesions are
performed on a grammatical route. But first we discuss the

necessity, following both our construction grammar approach
and neurophysiological evidence, to distinguish theoretically
between the roles of two different types of semantic con-
straints on the comprehension system.

We saw in Part 2 how TCG constructions combine both
form (SynForm) and semantic constraints (SemFrame). This
operationalizes the core tenet of construction grammar – that
syntax and semantics are not dissociated into two different
theoretical components (Croft and Cruse 2005). But the em-
pirical results reviewed above demand that we distinguish the
world knowledge preserved in agrammatic aphasics from
construction-related semantic constraints. We thus coin the
terms heavy semantics and light semantics for world knowl-
edge and construction-based semantics, respectively. World
knowledge, as we saw in Part 1, represents a source of infor-
mation that plays a pervasive role in both visual scene and
language comprehension and is heavy in terms of content
since it spans motor and perceptual schemas but also concep-
tual abstract knowledge that we can acquire through the very
use of language. Such knowledge of agents, objects, actions
and more abstract entities that gets richer as we interact with
the physical and social environment, contrasts with the light
semantic content of constructions which develops through
experiences of patterns of language about agents, objects,
actions and more. The latter may vary from the highly abstract
(as in noun versus verb providing a language-dependent syn-
tactic elaboration of the semantic categories of objects versus
actions) or strongly linked to sensory or motor experience as
illustrated by the example of the IN-COLOR construction (see
Fig. 3). For us, light semantics reflects this construction-
related categorization, more or less abstracted from world
knowledge in a usage-based language-laden way. It is “light”
because only a few semantic features matter, and it cannot be
refined and enriched by interacting with the world beyond the
bounds set by a given language (although of course perfor-
mances vary). Theoretical distinctions have been proposed by
others that are closely related to ours (for example see Levin
1993; Mohanan and Wee 1999; Pinker 1989). Those however
stem from linguistic analyses, while the light and heavy se-
mantics distinction emerges from considerations related to
neuropsychological data and computational brain theory. It
will be the role of future work to analyze the relations between
these different theoretical perspectives and in particular to
discuss how to bridge between approaches like ours that go
from the brain-up and those that work from language-down.

Kemmerer (2000a) reported a word-picture matching task
that required discrimination between 3 verbs that differed only
on the basis of semantic features relevant from a grammatical
point of view such as “spill”, “pour”, and “sprinkle.” One
subject performed poorly on this word-picture matching task
while performing well in a grammaticality judgment task in-
volving the same verbs “slotted” into constructions that matched
or not in terms of the “grammatical” semantic constraints e.g.,
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“Sam spilled beer on his pants” vs. *“Sam spilled his pants with
beer” (see Construction Grammar section in Part 1). Two other
patients showed the opposite pattern of performance. This dou-
ble dissociation has been replicated for the semantic constraints
associated in English with prenominal adjective order (“thick
blue towel” vs. * “blue thick towel”) (Kemmerer 2000b;
Kemmerer et al. 2009), those associated with the un-prefixation
of verbs (buckle-unbuckle vs. *boil-unboil) (Kemmerer and
Wright 2002), and for the body-part possessor ascension con-
struction (“Sam hit Bill on the arm” vs. *“Sam broke Bill on the
arm”) (Kemmerer 2003). These empirical results, bringing a new
light on the grammatical impairments that can result from brain
lesions, demonstrate the need for our model to account for the
possibility of selective impairments of heavy and light semantics
in language comprehension.

Dynamic Interactions of World Knowledge, Linguistic,
and Visual Information During Language Comprehension

While remaining centered on the question of modeling the
language-vision interface, we conceptually extend TCG to
account for the role of heavy semantics during comprehen-
sion with a SemRep now serving as the output of the com-
prehension system. Crucially, the final SemRep can emerge
through cooperative computation from both linguistic infor-
mation and world knowledge. The general architecture of the
TCG comprehension model is described in Fig. 6.

Lessons from Agrammatism: A Two-Route Model
for the Processing of Linguistic Inputs

In our initial work on scene description, the SemRep was
generated and dynamically updated by the visual system, with
construction assemblages controlling the flexible generation
of utterances corresponding to all or part of the SemRep (see
Part 2). In the TCG comprehension model, we enrich this
dynamics by allowing the SemRep to be built and updated
not only by the vision system, but also by two routes process-
ing input utterances in parallel. These two routes, shown in
Fig. 6, correspond to (1) the heavy semantic route that gener-
ates semantic representations from content words using world
knowledge and (2) the grammatical route that puts grammat-
ical knowledge to work, using grammatical cues and con-
straints (including light semantics) to map the surface content
of the utterance input to a SemRep graph representing its
semantic content. Therefore, the SemRep, during comprehen-
sion, becomes the locus of interaction between three sources
of information: vision, grammar, and world knowledge that
can enter into cooperative computations.

A key feature of the TCG comprehension model’s archi-
tecture lies in the fact that each input word will have an effect
on 2 different routes triggering two parallel processes to
update the SemRep. For an input word W:

– Route HS. Heavy semantic route: If W is a content word,
the heavy semantic route will allow W to create or verify
an existing node in SemanticWorkingMemory by directly
accessing its associated world knowledge content repre-
sentation in long term memory. If W is a function word, it
is ignored by the heavy semantic route that is blind to
grammatical cues. Complementary to this data-driven in-
stantiation of world knowledge, the heavy semantic route
allows active SemRep nodes to query the world knowl-
edge through a World Knowledge WM that builds plausi-
ble semantic relations between the nodes. For example, the
word “eat” might not only instantiate a node for the
concept EAT but also link it to a node for SOME-
THING-EDIBLE. These world knowledge based hypoth-
eses can then verify, modify, or enrich the structure (nodes
and edges) of the SemRep subgraphs currently active in
Semantic WM or yield nodes which compete for later
resolution. Working incrementally, upon receiving W the
heavy semantics route updates the state of the Semantic
WM, which is composed of a cloud of competing and
cooperating SemRep subgraphs (see for example Fig. 8
(t4)), on which the next word W’ will be received, gener-
ating anticipations of what semantic contentW’will bring.

– Route G. Grammatical route: Whether W is a content or
a function word, it will result in the instantiation or
verification of a construction, modifying the state of
the construction assemblage in Grammatical Working
Memory. In our previous production model the con-
structions are initially anchored on the SemRep through
their SemFrame with the final utterance production
resulting from the read out of the SynForms of the
constructions alliances that won the competition. During
comprehension, in contrast, the constructions are initial-
ly anchored on input words through their SynForm. At
each time step, the unification of the SemFrames for the
winning construction alliance provides the graph struc-
ture representing the current meaning associated with
the word sequence received. Therefore, through the
modification of the construction assemblage, the input
W to the grammatical route will verify, update, or mod-
ify the SemRep graph structures in semantic working
memory. By updating of the state of the semantic work-
ing memory upon receiving W, the Grammatical route,
like the Heavy Semantics route, modifies the semantic
context on which the next word W’ will be received and
generates anticipations. For the Grammatical route, such
anticipations and context modification also extend to the
Grammatical working memory: the updated construc-
tion assemblage following the reception of W generates
new grammatical expectations for W’.

Following the principle of cooperative computation, the
SemReps graphs active in semantic working memory are also
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defined both in terms of their structure and in terms of the
activation levels of their components (nodes and edges), acti-
vation levels that reflect the degree of confidence associated
with a relation (edges) or with some semantic content (node).
Any modification made by either the heavy semantics or the
grammatical route on a SemRep subgraph is expressed in
terms of a change in activation levels (that can result in piece
of graph being discarded altogether if its activation level
becomes too low). These can therefore register the competi-
tion and cooperation of both routes.

While it had been proposed that the architecture of the
language system organizes the linguistic processes serially with
syntax being processed first, yielding a syntactic tree fromwhich
meaning can be derived (Frazier and Fodor 1978; Friederici
2002), recent empirical studies tend to favor a “multi-stream”
view of the language system (Osterhout et al. 2007) in which
comprehension is the result of parallel processing pathways
(with usually one of which is more semantic in nature and
related to world knowledge while the other is more syntactic)
interacting only at given interfaces (e.g. for models based on
ERP data and related to the issue of the “semantic P600” see
(Bornkessel and Schlesewsky 2006; Kim and Osterhout 2005;
Kos et al. 2010; Kuperberg 2007), for eye-tracking experiments
during reading see (Vosse and Kempen 2009) and for models
based on direct comprehension tests see (Ferreira 2003)). In line
with these approaches, our comprehension model sees the syn-
tactic tree (the construction pyramid built in Grammatical WM)
as a means to an end – namely to generate the appropriate

SemRep –with the heavy semantic route (HS) andGrammatical
route (G) competing and cooperating at each time step. In
addition, by computationally grounding the comprehension pro-
cess into the cooperative computation, TCG highlights the
problem of determining when the computation should stop. A
parsing can therefore be good-enough to support a semantic
interpretation of the input without necessarily exploiting or
satisfying all the syntactic constraints, a position that echoes
the empirical findings of (Ferreira and Patson 2007) related to
the notion of “good-enough comprehension”.

The Heavy Semantic Route

The heavy semantic route (HS) can directly create SemRep
nodes (or verify an existing node) for content words, without
invoking constructions. In addition, active nodes in Semantic
working memory can send queries to world knowledge that
can in turn post hypotheses in the World Knowledge WM,
exploiting the principle of the working memory system of
VISIONS. In doing so, heavy semantics can restructure the
semantic graph, modifying the edges, enriching the semantic
content, and setting semantic expectations for future the lin-
guistic inputs.

Following the conventions of schema theory, the state of
world knowledge WM depends on competition and coopera-
tion in a distributed network of schema instances representing
world-knowledge. We propose to represent the heavy seman-
tics content carried by world knowledge schemas using a

Fig. 6 TCG as a two-route model of language comprehension. The
utterance input is fed in parallel to a grammatical route (G) that updates
the SemRep indirectly through the creation of a construction schema
assemblage in grammatical working memory and to a heavy semantic
route (HS) that can generate SemRep nodes directly for content words
but is not sensitive to grammatical cues. In addition, the heavy semantic
route incorporates the possibility for the Semantic WM to query the world
knowledge WM to generate hypotheses about the plausible relations

between SemRep nodes. The currently relevant hypotheses are kept active
in theWorld KnowledgeWMwhere they cooperate and compete to update
the SemRep. Thus the Semantic WM becomes the locus of a cooperative
competition where the construction assemblage on the one hand and the
world knowledge hypotheses on the other compete and cooperate at each
time to update the SemRep. The Visual working memory remains a source
of input for the SemRep as in the production model. (WM Working
Memory, LTM Long Term Memory)
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graph structure similar to the one used for the SemRep. Heavy
semantic content can capture knowledge about things (their
perceptual properties, their use, events they participate in…),
actions (the type of agents, things they usually involve and the
role they play…), or events (who participates, where, in what
actions…).

When queried, the schemas are instantiated in the world
knowledge workingmemorywhere they remain as long as they
continue to be relevant and are pruned out when their activation
levels fall below threshold. Initially each world knowledge
schema instance invoked is associated with an activation value
that represents the degree of confidence in the hypothesis it
represents. Those whose activation levels are large enough
participate in updating the SemRep by posting their hypothesis
in semantic memory where it will enter in cooperative compu-
tation with other hypotheses. The process can yield an increase
in activation values within winning “alliances” and a decrease
in activation values for the losers. The activation level of an
unused schema instance slowly decays.

Figures 7 and 8 illustrate how the heavy semantic route can
generate a semantic representation from the example input
utterance “The officer is chased by the thief in blue”. In
Fig. 7 word inputs are noted on the left and are received
sequentially. Content words are in bold and only they activate
the semantic route. (All the words activate the grammatical
knowledge but this route is not shown here; see below The
Grammatical Route). At (t1) the words “The officer” are
received and a node is directly created for the content word
officer. This active OFFICER node in turn sends a query to
world knowledge that instantiates two world knowledge
schemas representing perceptual knowledge about officers:
that they were blue uniforms, and knowledge about events
they are involved in: they are the agents of actions that involve
thieves as patients. The latter has a high initial activation value
and updates the SemRep right away. At (t2) the words “is
chased” are received and a CHASE node is created. The
processing of the previous word has resulted in a SemRep
that anticipates the reception CHASE and has already set
OFFICER in the agent role and THIEF in the patient role.
The CHASE node therefore simply tries to unify with the
ACTION node. Since it is a good match, this unification link
(dotted line) receives a good activation value and the general
activation value of the OFFICER-ACTION-THIEF graph
goes up since it has received some evidence of being correct.

In Fig. 8, at (t3) the words “by the thief” are received. A
THIEF node is created that right away generates a high
activation unification link with the already present THIEF
node. This further boosts the general hypothesis that the
officer is chasing the thief. An instance of a world knowledge
event schema is invoked carrying the hypothesis that thieves
steal objects. At (t4) the words “in blue” are received and a
BLUE node is created. In world knowledge memory, the
OFFICER-WEAR-UNIFORM-BLUE hypothesis was slowly

decaying since it did not seem to be relevant. In presence of
the BLUE node its activation value increases to a level high
enough to enter semantic working memory and generate a
possible unification link with the BLUE node. On the other
hand, another hypothesis enters the competition, queried by
the THIEF node, representing the general knowledge that
THIEF wear cloth that can have attributes (including color).
So the BLUE node also creates a link with this hypothesis, this
link is stronger than the other one because of a recency bias.

This notion of recency bias is a crucial element in modeling
comprehension (and this holds for constructions as well as
world knowledge – consider, for example, the role of "depen-
dency distance" in assessing language complexity as used,
e.g., by Hawkins 1999). Just as in VISION an object creates
context for what can be found in its immediate surroundings,
here each content word serves as context for what occurs in
their temporal vicinity. Here we focus on semantic context:
blue occurs closer to thief than to officer. Two subgraphs
therefore compete for the attachment of BLUE and the coop-
erative computation might not generate a clear winner. Note
that in this example, the THIEF-STEAL-ENTITY has lin-
gered with its activation decaying. If the sentence had contin-
ued with “…because he stole a diamond”, the THIEF-
STEAL-ENTITY hypothesis could have helped resolve the
ambiguous anaphoric reference (since “he” could in theory
refer to either the thief or the officer).

Relying on heavy semantics only, the final SemRep pro-
vides an interpretation of the input sentence “the officer is
chased by the thief in blue” as “The officer chases the thief”
with high confidence, but is at chance for the interpretation
of whether “the officer is wearing a blue uniform” or “the
thief wears a blue outfit”, with the former favored by general
world knowledge while the latter is favor by the temporal
proximity of thief and blue.

This conceptual example illustrates how initial world
knowledge hypotheses bias the interpretation of later inputs,
while temporal proximity of inputs tend to result in bias
towards linking them semantically. We can find a direct par-
allel of this incapacity to resolve the attachment of BLUE in
the performance at chance of agrammatic aphasics on revers-
ible sentences such as “The lion that the tiger chased is fat”.
Initial hypotheses would tend to favor the lion in the agent role
of some action of which tiger would be the patient, but the
proximity of chase with tiger relative to lion would favor an
attachment of tiger as an agent of chase. Cooperative compu-
tation might not be able to break the tie other than through the
action of noise, resulting in answers at chance.

The Grammatical Route

Contrary to the heavy semantics route, the grammatical route
processes all word inputs (content and function words) and
incrementally updates the SemRep indirectly by invoking
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constructions in Grammatical working memory whose
SynForms match either the perceived input words or some
already activated construction instances. In grammatical work-
ingmemory, constructions enter into cooperative computation to
generate construction assemblages. Unifying the SemFrames of
the participating constructions provides grammatically driven
hypotheses for updating the SemRep by modifying the graph
structure (adding nodes, edges, or modifying existing edges).
The process of building the construction assemblage retains the
key properties of cooperative computation described for

production and exemplified in Fig. 4. The main difference is
that during production constructions are invoked on the basis of
their SemFrame and cooperate to generate utterances by unify-
ing their SynForms.

Constructions represent learned pieces of grammatical
knowledge, which includes knowledge about light semantics
constraints. Construction assemblages represent therefore
form-meaning mapping hypotheses linking input words se-
quences to their semantic representations, hypotheses that ex-
clusively rely on grammatical knowledge (and not on world

Fig. 7 Illustration of the comprehension process focusing on the heavy
semantics route for the input utterance “The officer is chased by the thief
in blue”. The top and bottom sections of the figure represent the unfolding
comprehension at time (t1: after hearing “officer”) and (t2: after hearing
“chased”) respectively; Fig. 8 shows how processing unfolds as the
remaining content words are heard. At each time, on the left, is repre-
sented the portion of the utterance that has been received so far. The
content words are in bold; only they serve as inputs for the HS route. The

mapping of all the words to the grammatical route through grammatical
knowledge is shown but is not pursued here (see section The Grammat-
ical Route). At each time, the state of the World knowledge Working
Memory (World knowledge WM) is shown at the bottom right, while the
state of the Semantic Working Memory (Semantic WM) is shown at the
top right. Numbers indicates activation values. Colored regions of the
SemRep graph in Semantic WM represent hypotheses generated from
World knowledge WM
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knowledge). The activation value of an assemblage, reflecting
how stable it is as well as its competition with other “alliances”,
codes the plausibility of the associated hypothesis. The coop-
erative computation process leading to the self-organization of
form-meaning mappings can be seen as a distributed search of
solutions that jointly satisfy the multiple local grammatical
constraints learned and stored in grammatical knowledge as
constructions.

Due to the incremental and cooperative nature of the com-
putation, each new construction invoked in grammatical
working memory serves as a context for further processing,
generating expectations that will impact the grammatical pro-
cessing of following inputs.

Figures 9 and 10 illustrate how the grammatical route can
generate a semantic representation from the example input
utterance “The officer is chased by the thief in blue”, a process

that – in normal subjects – occurs in parallel of the one
described above for the heavy semantics route (see section
The Heavy Semantics Route). The conventions used to repre-
sent the input words are the same as the ones used for the
heavy semantics route. This time only the grammatical route is
shown. In Fig. 9 at (t1) the words “the officer” are received.
This results in the invocation in grammatical workingmemory
of the DET_the construction whose SynForm matches the
and of the word level OFFICER construction whose
SynForm matches officer. Since the OFFICER construction
matches the constraints of the second slot of the DET_the
construction, the two form a first alliance that maps this initial
word sequence to a SemRep OFFICER node. In addition,
some higher level constructions enter the grammatical work-
ing memory since their first slots can link to the DET_the +
OFFICER alliance. The SVO construction competes with

Fig. 8 Generating the SemRep from the heavy semantic route (Part 2). Continuation of Fig. 7 for time (t3: after hearing “thief”) and (t4: after hearing
“blue”). Details of the process are given in the text
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X_be_Y (where Y is an attribute of X) and SVO_Passive
compete, with SVO initially having the upper hand since it
benefits from a higher initial activation due to its very
frequent use in English, which makes it a highly plausible
hypothesis. At (t2) the words “is chased by” are received.
The past participle and preposition by only match the
SynForm of SVO_Passive whose activation increases,
causing it to win the competition against SVO and
X_be_Y. The read out of the form-meaning mapping

generated by the assemblage updates the SemRep with a
CHASE node as well as an ANIMATE node representing
its expected agent while the OFFICER node is now
assigned the role of patient.

In Fig. 10, at (t3) the words “the thief” are received. The
constructionDET_the and THIEF are invoked, which form an
assemblage whose attachment is already guided by the presence
of a strongly activated alliance involving SVO_Passive. The
new assemblage updates the content of the former ANIMATE

Fig. 9 Generating the SemRep from the Grammatical route (Part 1).
Illustration of the comprehension process focusing on the grammatical
route for the input utterance “The officer is chased by the thief in blue”
(continued in Fig. 10). The top and bottom part of the figure represent the
unfolding comprehension at time (t1) and (t2) respectively. At each time,
on the left, is represented the portion of the utterance that has been
received so far. All the words (content and function words) serve as input
to the grammatical route through grammatical knowledge. The mapping

of content words as inputs for the HS route is shown but not pursued here
(see section The Heavy Semantics Route). At each time, the state of the
Grammatical Working Memory (Grammatical WM) is shown at the top
right, while the state of the Semantic Working Memory (Semantic WM)
is shown at the bottom right. Colored regions of the SemRep graph
indicate that they have been generated by reading out the form-meaning
mapping of the construction whose name is noted next to the colored
region. Details of the process are given in the text
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node which becomes a THIEF node, as a result of the attach-
ment of the DET_the + THIEF assemblage to the last slot of
the SVO_Passive construction. At (t4), the words “in blue” are
received. Even if blue invokes more strongly the BLUE con-
struction, in invokes both the IN_LOC construction and the
IN_COLOR construction (shown in Fig. 3). If both have the
general SynForm in X, the former requires X to be a location
while the latter requires X to be a color. This difference in light
semantics constraints will result in the BLUE construction
matching only the slot of IN_COLOR which will win the
competition with IN_LOC. A competition remains for the last
slot of SVO_Passive between DET_the and IN_COLOR.
Although the former was already linked to this slot, the alliance

in which DET_the links to IN_COLOR and IN_COLOR to
SVO_Passive is larger and therefore benefits from a higher
activation value. This leads to the final form-meaning mapping
updating the SemRep linking the THIEF node to a BLUE node
through the IN_COLOR SemFrame.

Cooperative Computation Between Grammatical and Heavy
Semantics Routes

The final SemRep in the previous section, generated by the
grammatical route alone, accurately represents the semantic
content of the input utterance, with thief assigned as the agent
of the action of chasing the officer, and blue assigned as the

Fig. 10 Generating the SemRep from the grammatical route (Part 2). Continuation of Fig. 9 for time (t3) and (t4) (top and bottom respectively).
Details of the process are given in the text
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color of the thief’s outfit. However, in the case of grammatically
ambiguous utterances the final output via route G alone may
preserve competing form-meaning mapping hypotheses (e.g.
The man kicked the ball in the tree, for which tree can be
assigned as goal where the ball ends, or the location where the
man is located when he performs the kick). It is the cooperative
competition between the grammatical and the heavy semantics
routes that can disambiguate this output. The heavy semantics
route can provide the information that kicking rarely occurs in
trees. Similarly, going back to our ambiguous example in the
previous section “The lion that the tiger chases is fat”, the
grammatical route will break the ambiguous heavy semantics
interpretation.

With this, let’s see how our model postulates that the heavy
semantic (HS) and grammatical (G) routes process the utter-
ance inputs in parallel and enter into cooperative computation
in semantic working memory to generate the SemRep.
Figure 11 illustrates this cooperative computation process by
showing the combined influences of the two routes on the
SemRep for the input utterance used in the examples detailed
above: “The officer is chased by the thief in blue”. It describes
the state of the system once all the input words have been
received. The grammatical memory therefore contains the con-
struction assemblage already described in Fig. 10 (t4) while the
world knowledge working memory is as described in Fig. 8
(t4). If in this example we focus on (t4), we want to insist on the
fact that the grammatical and heavy semantic routes do not
independently proceed to completion but interact at each stage.
The semantic working memory in this example however, con-
tains SemRep graphs generated by both routes. This results in a
more complex graph than in the preceding examples. Two
different interpretations of the roles that THIEF and OFFICER
play in the CHASE action are simultaneously part of the
SemRep: the grammatical route assigns the role of agent to
THIEF based on grammatical cues while the heavy semantics
assign the role of agent to OFFICER. We note that the compe-
tition between the roles of patient and agent for OFFICER
emerges as early as (t2). The attachment of BLUE to the outfit
of either the officer or the thief is ambiguous from the point of
view of the heavy semantics route while it is assigned as an
attribute of the outfit of the officer by the grammatical route by
the IN_COLOR construction.

The SemRep appears therefore as a locus of cooperative
computation resulting in competition between incompatible
semantic interpretations of the utterance input and in cooper-
ation between the ones that supports each other. In our exam-
ple, a competition is initiated early on between the grammat-
ical route and the heavy semantic route for the assignment of
the role that the OFFICER plays in the action. The grammat-
ical route cooperates with the heavy semantic hypothesis that
BLUE refers to the outfit of the thief but competes with the
hypothesis that it refers to the outfit of the officer. This can
result in the latter being pruned out, leaving only the correct

interpretation present with a high activation value in semantic
working memory. As for the assignment of roles in the
CHASE action, the resolution depends on the activation
values of each interpretation engaged in a winner-take-all
competition. The activation values in turn depend on the
cooperative computation process within each route, but we
suggest that it can also depend on two other factors:

– The weight assigned to each route. For healthy subjects, the
evidence gathered through the grammatical route probably
weighs more in the competition than that gathered through
the heavy semantics route. But in noisy or low attention
conditions, or following a partial lesion of the path allowing
the updating of the semantic working memory from gram-
matical working memory, the heavy semantics route could
win the competition. The reduction of the weight assigned
to the grammatical route in noisy and low attention condi-
tions rests on the assumption that the grammatical route is
more sensitive to noise and less automatic (requiring more
sustained attention) than the heavy semantics route.

– The visual input presented. Since the SemRep is a seman-
tic representation tied to visual perceptual schemas
interpreting visual scenes, we can imagine – as in the
visual world paradigm (see Part 1, Section 1) and the
sentence picture matching task (see Part 2 Section 1 above
on agrammatism) – a scenario where a scene depicting a
thief and an officer is presented to the subject with varia-
tions in terms of who chases whom and in the color of the
outfits. In this case, in addition to the topology of the
SemRep, the visuospatial relations between nodes, as
defined by their associated perceptual schemas, can serve
as constraints in the competition. For example, if the
image presents a thief with a blue outfit, then the BLUE
node, through the visual system, links to the same spatial
region as THIEF and this therefore would influence the
competition in favor of having the BLUE node associated
with the THIEF node.

Conceptual Account of Agrammatic Comprehension
Performances in Sentence-Picture Matching Tasks

The empirical evaluation of comprehension performances in
aphasics requires the use of experimental paradigms that let the
neurologist or the researcher probe the interpretation of the
sentence that the patients generate during the comprehension
process. As we described in the previous section on
agrammatism (Part 3 Sections 1 and 2), sentence-picture
matching tasks are commonly used in aphasia battery tests or
in neurolinguistics experiments. The patient listens to an utter-
ance while or before being presented with one or multiple
visual scenes. The task consists then for him to answer ques-
tions about these scenes. In the case of single scene presented
the question can be “Does the scene match the utterance?”

Neuroinform



which requires a yes or no answer. Alternatively, if multiple
scenes are presented, the question can be “Which scene
matches the utterance?” which requires the patient to point to
the correct scene. In future work, we will apply TCG to this
problem. Basically, the task tests the capability of the patient to
determine whether there is a SemRep for the sentence that
matches a SemRep for a given picture in orderto reach a yes/no
decision. Alternative approaches could (i) use vision to gener-
ate SemReps for each scene, use TCG in comprehension mode
to generate a SemRep from the target sentence, and test wheth-
er these match in some sense; or (ii) use TCG in production
mode to generate a sentence describing the scene, and then test
whether this matches the target sentence in some sense. This
begs the question of whether the processing of visual scenes
used in the sentence-picture task is segregated from the work-
ings of the “language system” or whether the two cooperate
throughout to reach a decision. The design of the experiments
could be such that the effects of the visual scene presentation
are counterbalanced and controlled at the level of multiple trials
and/or subjects, leaving the possibility to specifically target the

language system. However, the goal of computationally guided
models is to simulate the behavior of a single individual
performing a single trial of a sentence-picture matching task
and cannot eschew the problem of incorporating the role of
visual processes. The TCG models of comprehension and
production allow us to revisit the experimental results on
agrammatism focusing on (conceptual) simulation of a
sentence-picture matching trial, limiting ourselves to tasks
involving only one visual scene for which the subject has to
decide whether or not it matches the utterance they hear.

Figure 12 provides four conceptual examples of sentence-
picture matching trials illustrating the collaborative computa-
tion of the grammatical and the heavy semantics routes but also
of the visual processes in generating the semantic representa-
tion associated with an utterance. In each panel, the top section
represents the perceptual schemas active in visual working
memory, the bottom section represents the state the construc-
tion assemblage in grammatical working memory, the left
section represents instantiated world knowledge hypotheses
in world knowledge working memory (the number indicates

Fig. 11 The two routes are engaged in cooperative computation to
generate the SemRep. The figure combines the final outputs of the
comprehension process for the heavy semantics route (Fig. 8 (t4)) and
for the grammatical route (Fig. 10 (t4)). The Semantic Working

Memory appears as a locus of competition and cooperation between
SemRep graphs representing the interpretations of the utterance input
generated by each route. Details of the process are given in the text
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their activation level). At the center of each panel, all three
routes converge to update the content of semantic working
memory. For simplicity, we present in each panel a static
snapshot of the system that illustrates a key property of the
TCG comprehension model’s dynamics in relation to modeling
agrammatic comprehension. We assume that the utterance has
been received to insist on the cooperative computation between
routes rather than the incremental process of word by word
comprehension (that has been described in the previous sec-
tions). We therefore also assume that all the nodes associated
with content words have been instantiated, the three routes
collaborating and competing for the assignment of relations
between them (edges).

Figure 12(a) illustrates the situation in which an utterance
neutral in terms of heavy semantics is received, “the cheetah is
chased by the tiger,” while a visual scene that accurately
matches its meaning is presented. The TIGER, CHEETAH
and CHASE nodes are linked to their respective perceptual
schemas, hypotheses in the world knowledge working memo-
ry, and to the respective TIGER, CHEETAH and CHASE
constructions in grammatical working memory. The goal of the
cooperative computation between routes is therefore to judge
what roles to assign to the TIGER and CHEETAH nodes in
relation to the CHASE action nodes. The thin arrow mapping
the grammatical working memory to the SemRep simulates a
partial lesion of this route resulting in a deficit in using the

Fig. 12 Modeling the sentence-picture matching task with TCG
employed in comprehension mode. In each panel, the top section repre-
sents the perceptual schemas applied to the visual scene. The bottom
section represents the grammatical working memory maintaining a
construction assemblage generated by the grammatical route. The
left section represents the world knowledge working memory and
currently active hypotheses. The middle section represents the
SemRep built in semantic working memory, locus of collaborative

computation between the three routes (indicated by double ar-
rows). The thickness of the double arrows represents the weight
assigned to the interpretation of each route in the collaborative
computation of the SemRep. Lower weights can be due to partial
lesions. In panel (d), the absence of construction assemblage
represents the effect of lesions that would impair the processing
capacities of the grammatical working memory. Details for each
panel are given in the text
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form-meaning mapping generated by the grammatical route to
update the SemRep (see Fig. 12(d) for an alternative lesion
simulation). The interpretation of the utterance input rests
therefore essentially on the heavy semantics route. Since, from
a heavy semantics perspective, it is just as likely to have either
the cheetah or the tiger as the agent of the action, such situation
can result in an at chance assignment of the agent and patient
role. However, the fact that, in the passive construction, the
CHEETAH node is created first, results in an earlier activation
of the CHEETAH related world knowledge that could bias the
assignment of the CHEETAH node as an agent, agent role
confirmed by the then generated CHASE node. Once the
TIGER node is created it would then fill in the patient role in
the already quite highly activated and stable SemRep. Assum-
ing some residual but weak capacity to assign roles based on
grammatical processes, for an input in the passive voice, the
weak assignment generated by SVO_Passive construction
would compete with the heavy semantics “agent received first”
hypothesis while, for the active voice, the weak SVO construc-
tion would cooperate with the similar heavy semantics “agent
received first” hypothesis. Such an interpretation would explain
the classic pattern of agrammatic comprehension for which
patients are above chance for active sentences and at chance
for passive sentences even when no world knowledge cues are
apparently available. However, in our case, the explanation of
the comprehension pattern is not found in a differential treat-
ment of SVO and SVO_Passive constructions (one being
“more lesioned than the other” or “harder to process”) but
emerges from the cooperative computation between routes.

In Fig. 12(b), the input utterance is “The ball is swatted by
the cat”. This example illustrates the case in which the heavy
semantics route generates a unique highly plausible hypothe-
sis that can collaborate with the weakened grammatical route
and allow the system to generate the proper interpretation of
the utterance input. Here the visual scene matches the meaning
of the input and therefore all the processes converge to the
same stable interpretation, compensating the lesion to the
grammatical route. Figure 12(c) presents the situation in
which for a similar input utterance, the visual scene presented
does not match and is counterfactual with respect to our
knowledge of the world (a ball swatting a cat). The hypothesis
generated by the heavy semantics would cooperate with the
output of the weakened grammatical route to generate a
SemRep graph that this time enters in competition with the
graph generated by the perceptual schemas active in visual
working memory. This competition signals the mismatch
between the utterance received and the visual scene.

Such examples of visual scenes in Fig. 12(b) and (c) are
directly drawn from sentence-picture matching tasks used to
test agrammatic comprehension (Sherman and Schweickert
1989). We see that the behavioral result of the sentence-
picture matching trial rests on the complex interactions of
three sources of information at the level of the SemRep. A

bias towards one source of information or another can tip the
cooperative computation in favor of one of the possible in-
terpretations of the linguistic input. Discounting perceptual
information while boosting the role of heavy semantics to
compensate for the degradation of grammatical processing
simulates the role world knowledge plays in agrammatic
comprehension. However, the model puts at the forefront the
fact that when using a sentence picture matching task, the
impact of the perceptual content of such an image on the
language comprehension system cannot be fully dissociated
from that of the linguistic and heavy semantic content.

For the first three examples we have focused on possible
lesions affecting the link between and an intact grammatical
working memory and the semantic working memory. Such
lesion that would keep the grammatical process per se intact
but deteriorate its capacity to impact the semantic interpreta-
tion partially echoes the conclusions of Schwartz et al. (1987)
who moved away from a purely syntactic explanation of
agrammatism and hypothesized that the deficit resulted from
an impaired participation of the extracted syntactic informa-
tion in the thematic role assignment process. Figure 12(d)
illustrates the fact that the degradation of the role of grammat-
ical information on generating the SemRep could also be
simulated by a lesion limiting the computational capacity of
the grammatical working memory to process grammatical
constraints. This hypothesis echoes the capacity approach to
agrammatism developed by Miyake et al. (1994, 1995) who
hypothesized that agrammatic comprehension is a result from
a reduction, following brain lesions, of working memory re-
sources available to compute the syntactic information
contained in linguistic inputs. In this case, the connection
between semantic and grammatical working memory remains
intact, but the grammatical working memory is limited in the
complexity of the construction assemblages it can build, a
limitation that we illustrate here by allowing only word level
construction to be invoked into working memory. Construc-
tions invoked in grammatical working memory TCG are in-
stances of schemas and therefore represent active processes
mapping their SynForm to a SemFrame but also creating links
between their slots and other constructions. Since these pro-
cesses involve both detecting temporal sequences of inputs or
constructions that match a SynForm or assessing the match
between the light semantic constraints of a slot with possible
construction inputs, reduced computational capacity of gram-
matical memory can be generated by a variety of lesion
affecting parts or whole of the process of construction
matching. In particular, specific lesion to the light semantic
constraints matching can be simulated, lesions that would
result in the deterioration of the grammatical working memory
to build stable construction assemblages while the heavy
semantics system remains intact.

To conclude we go back to the tripartite distinction found by
(Berndt et al. 1996) in their meta-analysis of comprehension
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patterns for reversible sentences (agent and patient role for the
entity described are equally plausible) in sentence-picture
matching tasks. They found that about the same number of
agrammatic aphasics were (1) at chance for both passive and
active, (2) at chance only for passive and better than chance for
active, or (3) better than chance for both. In our analysis of
Fig. 12(a) we showed how the TCG model of comprehension
can account for the comprehension pattern (2) as emerging
from the cooperative computation between a weakened gram-
matical route and the heavy semantics route without assigning
the deficit to a processing difficulty to specifically associated
with the SVO_Passive construction. SVO and SVO_Passive
are treated equally. The lesion deficit is assigned to the capacity
to use the form-meaningmapping built in grammatical working
memory to update the SemRep. Such deficit results in the equal
deterioration of the capacity to use the grammatical cues asso-
ciated with each one of these constructions to assign relations
between nodes, deterioration that can be alleviated in the case
of the SVO construction only thanks to the general heavy
semantics hypothesis that tend to assign the role of agents to
the first encountered content word (if it describes an animate
entity that is usually involve in doing something). The model
can explain the comprehension pattern (1) by making the
hypothesis that patients showing degraded capacity to process
both active and passive constructions for sentence-picture
matching task could suffer from lesions affecting not only the
grammatical route but also the heavy semantics route. This
indeed would result in a difficulty to use the “agent received
first” hypothesis efficiently. As for the comprehension pattern
(3) it can be accounted for by allowing for only mild lesion of
the grammatical route, allowing the grammatical constraints to
weigh in the final role assignment.

Finally, the explanations of the comprehension patterns (1)
and (2) by the TCG comprehension model entail the following
predictions. Patients that show good performances for active
constructions even in the case where no world knowledge
cues can be used, should be significantly better for sentences
of the type “the tiger chases the cheetah” in which the “agent
received first” hypothesis applied, than for sentence of the
type “the ball hit the bat” for which the heavy semantics
would not instantiate hypothesis that would have BALL as
an agent, removing the possibility of heavy semantics to early
on help building anticipations of the relations that will link the
nodes generated by the content words hit and bat.

Future Challenges

In TCG both production and comprehension involve building
construction assemblages in grammatical working memory
through cooperative computation. However, so far the model
remains agnostic as to whether the construction instances
stored in long term memory and invoked during production
and comprehension are the same. Linguistic work on idioms

has distinguished between encoding and decoding idioms
(Makkai 1972). Indeed a hearer could figure out the meaning
of an encoding idiom when she first encounters it although as
a speaker she would not have guessed that these expressions
are semantically correct (e.g. “answer the door”) while one
needs to learn the conventional meaning of a decoding idiom
to be able to understand and use it (e.g. “he kicked the bucket”
or “he pulled a fast one”). From a usage base perspective, such
differences between encoding and decoding can be extended
to all constructions with speakers having their own idiosyn-
cratic encoding preferences at the word, idiom, and up to
argument structure level, while decoding expectations are
shaped by the landscape of input that the speaker receives. If
the question of the relation of between the grammatical
knowledge stored in long term memory for production and
comprehension remains to be better analyzed in TCG, the fact
that a single brain system supports both the encoding and
decoding grammatical working memory finds support in re-
cent behavioral (Kempen et al. 2012) and fMRI adaptation
studies (Menenti et al. 2011; Segaert et al. 2012).

The empirical results gathered in the last 10 years by the
various groups focusing on good-enough comprehension and
for which, to our knowledge, no computational framework
has been developed are yet another challenge that will need to
be addressed by TCG (for a review see Ferreira and Patson
2007). These studies have used rephrasing empirical paradigm
to more precisely study the semantic representations that
subjects derive from garden path sentences (Christianson
et al. 2001; Christianson and Luke 2011) revealing until then
ignored semantic effects such as the fact that the semantic
representations derived from the initial incorrect parse of a
garden-path sentence lingers and can be maintained alongside
the correct final semantic interpretation. The TCG framework
could offer a way to directly simulate this rephrasing paradigm
by coupling the comprehension and the production system
through a SemRep which, since it emerges from cooperative
processes, is not endowed with any requirement to optimally
represent the semantic content carried by the linguistic input.

As a framework that tackles (so far separately) both pro-
duction and comprehension, the next step in the development
of TCG will be to integrate grammatical encoding and
decoding from a computational perspective as well as in
relation to possible shared neural substrates. In doing so, we
will also need to expand our initial focus on agrammatic
comprehension to account for the relation between the deficits
in receptive and expressive aphasia. The integration of pro-
duction and comprehension, linked to a deeper analysis of the
interface between the language and visual system through the
computational the exploration the neural processes underlying
sentence-picture matching tasks, would make a step towards a
computational neurolinguistic model of a brain that can per-
ceive its environment, produce, and understand utterances
about what it perceives and therefore interact with others
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(Steels 1999). Such a step is crucial if we ever want to be able
to build a brain theory of language processing that accounts
for the essentially social and interactive aspect of language.

If the TCG model of comprehension has not so far been
tested against real-time processing empirical results, it offers a
computational framework that coarsely fits generally with these
multi-stream approaches in terms of the general differentiation
between a world knowledge and grammatical route (see above
Lessons from agrammatism). Moreover TCG adds a quantita-
tive perspective on the challenges that emerge from any attempt
to understand brain systems in which computation is distribut-
ed while schema theory puts time at the core of the modeling
effort. Indeed, we showed how the recency bias, capturing the
fact that word serves as context for what occurs in their tem-
poral vicinity, plays a crucial role in modeling comprehension
(see above The Grammatical Route). However the question of
the relation between the real-time processing, ie time as mea-
sured using neuroimaging techniques and especially
EEG/MEG, and computational time remains amajor challenge.
So far this type of timing is out of reach for our model but to our
knowledge this is general shortcoming of models that tackle
higher level vision or language processes. Bridging the gap
between neurocomputational models and real time EEG/MEG
recording by allowing models (at the neural or schema level) to
make clear causal contact with the measured data would allow
computational neurolinguistic models to generate predictions
that could be directly tested against neural timing data. As a
first step in this direction, we proposed elsewhere to expand
synthetic brain imaging methods to the modeling of ERP
components (Barrès et al. 2013, see below). Conversely,
EEG/MEG data can be used to constrain a model’s parameter
space and Dynamic Causal Modeling (David et al. 2006) offer
a partial answer to this problem. However, linking computa-
tional neurolinguistic model to real-time data remains for a
great part an open question, even though this issue is one of
the main stumbling blocks hindering the establishment of clear
linkages between the work of experimentalists and modelers.

Neuroinformatics Challenges Raised by Conceptual
and Computational Neurolinguistics

We have introduced TCG as a model of utterance production
and provided a conceptual extension of the TCG framework to
account for deteriorated comprehension performances in
agrammatic aphasics while focusing on the complex interac-
tions between visual information and grammatical and world
knowledge. We have argued for an approach to comprehension
whose product is a semantic representation of the linguistic
input. The production model has been implemented computa-
tionally and has offered useful psycholinguistic insights into on
the verbal description of somewhat complex natural scenes.
The extensions for TCG as model of comprehension have been

presented conceptually in enough detail to show their relevance
to the study of agrammatism and sentence-picture matching
tasks. In this last section, we turn to the more general issues
posed by developing databases and competing models that will
support further progress in neurolinguistics, and not just for our
own efforts in enriching the TCG framework. We also discuss
possible federation with natural language processing resources,
and the need to employ neuroinformatics to foster collaboration
between researchers.

Empirical Data Management

Neurolinguistic modeling navigates among diverse types of
data including fMRI, ERP, lesion, language acquisition, eye
tracking, and connectivity data. Some are of generic use in
cognitive neuroscience (e.g. fMRI) while others are more
specific to neurolinguistics (e.g., lesion data related to apha-
sia). Table 1 provides a summary of the neuroimaging data-
bases reviewed in this section. Table 2 focuses on connec-
tivity databases and Table 3 on language-related databases.

fMRI is the main neuroimaging technique used in
neurolinguistics to link brain regions to brain functions, just
as in any other fields of cognitive neuroscience (Friederici
2002; Hagoort 2005; Hickok and Poeppel 2004). fMRI data
management is relatively well developed compared to, for
example, that for ERP data. fMRI databases benefit first of all
from relatively standardized methods for reporting results in
publications – usually in the form of a table with each row
representing a clump of voxels for which a significant variation
of BOLD activity has been measured between experimental
and baseline conditions. The various columns correspond to the
coordinate of activation reported either in the standard
Talairach stereotaxic atlas (Talairach and Tournoux 1988) or
MNI atlas (Montreal Neurological Institute, Evans et al. 1993),
the p-, t- or z- values, and usually a name associated with the
brain area where the activation is found taken from an existing
nomenclature. BrainMap (Fox et al. 2005; Fox and Lancaster
2002) is one of the main databases for fMRI results. It is
combined with statistical tools for meta-analysis of the data.
The Activation Likelihood Estimation (ALE) method and tool-
box supports statistical combination of fMRI results to extract
patterns across many experiments (Laird et al. 2009). Vigneau
et al. (2006) carried out a widely cited neurolinguistics oriented
meta-analysis which provides an integrated perspective on
language systems that could not be achieved through individual
fMRI experiments. However it is interesting to note that the
authors did not rely on an existing database to perform their
analysis, but simply relied on extracting the stereotactic co-
ordinates of peak activations from tables in manually selected
papers, illustrating the work that remains to be done to make
those databases more commonly used tools. The Surface Man-
agement System Database (SumsDB, Van Essen 2009) is an
example of an MRI (rather than fMRI) oriented database for
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neuroanatomical data that also provides the possibility of stor-
ing private unpublished data.

fMRI databases, SumsDB, BrainMap as well as the model-
oriented Brain Operation Database (Arbib et al. 2013), all pro-
vide visualization tools to compare the activation foci of various
experimental results. Conceptual models in neurolinguistics
however do not usually report the neural substrate of the pro-
cessing modules they define in terms of quantitative stereotaxic
coordinates but in terms of brain area nomenclatures based on
more or less formal ontologies. In a classic conceptual model of
language comprehension by Friederici (2002), brain regions are
referred to using a mixed ontology of gyrus/sulcus neuroana-
tomical landmarks (e.g. left middle superior temporal gyrus)

along with cytoarchitectonically defined Brodmann areas,
neurolinguistics specific nomenclature (e.g. Broca’s area), and
functionally defined sensory areas (in this case the primary
auditory cortex). This multiplication of nomenclatures and on-
tologies hinders the attempts to quantitatively compare the
capacity of models to explain new empirical data. Such quanti-
tative comparison should, in principle, be required for compu-
tational models and therefore their development should impose
the creation of neuroinformatics tools to unify the nomenclatures
or provide new standard ways of reporting hypothesized neural
substrates. The reader will note, however, that our descriptions
of TCG fail this requirement because the modules in the current
version are not provided with hypotheses on neural localization.

Table 1 Neuroimaging databases

Name and URL Scope Notes

BrainMap Repository for human fMRI brain
imaging data.

Brain imaging data are linked to a rich ontology for
the description of experimental procedures. Provides
statistical tools (activation likelihood estimation, ALE)
for meta-analysis of coordinate based activation data.

http://www.brainmap.org/

SumsDB Repository of brain-mapping data
(surfaces & volumes; structural &
functional data)

It accepts unpublished data (which however are not public)
as well as published data. Provides tools for visualization
(WebCaret).

Surface Management System Database,

http://sumsdb.wustl.edu/sums/index.jsp

BRAID Large-scale archive of normalized
digital spatial and functional
imaging data.

Is related to clinical use including lesion studies.
Brain-Image Database

http://www.rad.upenn.edu/sbia/braid/

NEMO EEG and MEG ontology for ERP
and ERF databasing.

Aims at providing statistical tools for analysis of the
EEG and MEG activations patterns. So far, few entries
are available.

Neural ElectroMagnetic Ontologies,

http://nemo.nic.uoregon.edu/wiki/NEMO

MEG-SIM Shared database for simulated
and recorded MEG data.

Still at an early stage. The stated goal is to create “realistic
simulated data sets in formats used by each of the 3 major
MEG manufacturers. These can then be directly tested using
various algorithms which include multidipole, spatiotemporal
modeling, current reconstruction, minimum norm, and beam
forming methods.”

http://cobre.mrn.org/megsim/

Table 2 Connectivity databases

Name and URL Scope Notes

ConnectomeDB NIH-funded large scale project to generate
a database of the human brain connectome.
It includes both anatomical white matter tracts
defined by Diffusion Tensor Imaging, and
functional connectivities based
on resting state fMRI analysis.

Not yet available. Its development parallels
an effort to develop quantitative tools to
analyze the structure of anatomical and
functional networks in the human brain.

the Human Connectome Project

http://www.humanconnectome.org/

CoCoMac
Collations of Connectivity data on the

Macaque brain
http://cocomac.org

Systematic record of the known wiring of
the macaque brain. The main database
contains details of hundreds of tracing
studies in their original descriptions.

The database contains only tracing studies.
The development of MRI in non-human

primates could lead to the development
of MRI based connectivity databases
for this species.
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ERP data provide timing data at the expense of localization, so
that a model designed to address ERP data might involve
modules which can simulate various events with appropriate
timing but which have imprecise localization (and may indeed
reflect the cooperative computation of diverse circuits). Thus
part of the neuroinformatics challenge is to provide tools to
integrate diverse phenomena related to a given neurolinguistic
function, assessmodels which cover certain types of phenomena
but not others, and then provide tools to support development of
newmodels that, e.g., integrate the insights into lesion data from
one model with the insights into timing data from another.

Electroencephalograms (EEG) and Event Related Potentials
(ERP), and magnetoencephalograms (MEG) and Event Relat-
ed Fields (ERF) provide a core data type of neurolinguistics. By
offering a millisecond temporal resolution they uniquely suit
the needs of neurolinguistics since one of the main character-
istic of the language system is its capacity to process rapidly
changing inputs (whether visual or auditory). Despite the im-
portance of ERP data for neurolinguistics, no standard way to
report ERP data has yet been developed. The number of
electrodes for which the ERPs are reported vary and the scalp
distributions of the potential are not necessarily provided. The
extraction of quantitative data from such reports is arduous if
not impossible – they serve more a role of visual support. Even
when quantitative data are reported, the lack of standards is still
an issue. For example, the timing of a component can be
reported as time to peak, time to half-surface under the curve,
or as onset time. Moreover, the meaning of an ERP data point
often relies on a comparison with other ERP data point. For
example the so called “semantic P600” component that is
measured in response to certain type of semantic violation,
takes its interpretation from the comparison with the classic
P600 component associated with syntactic violations. It is the
association of these two results that makes the “semantic P600”
a challenge for neurolinguistics by suggesting close interac-
tions between semantic and syntactic processing.

There have been few attempts to database ERP results. The
Neural ElectroMagnetic Ontologies (NEMO) is one of the
most developed of these attempts (Dou et al. 2007). It pro-
vides an ontology to report and store EEG raw data, ERP data,

data provenance, and the cognitive and linguistic paradigms
that were used to collect the data. Its main goal is quantitative
data decomposition and analysis which certainly would be a
great option for more standard treatment of EEG/ERP results.
However since most important data collected over the past
30 years is incompatible with their framework, other tools are
needed to tackle existing datasets.

Use of ERP data led to the development of computational
tools to compute putative positions of the cortical sources of
the ERP signal using inverse models (Wendel et al. 2009), but
the problem is ill-posed – a given ERP pattern is compatible
with diverse source distributions. We have proposed that
computational modeling should extend Synthetic Brain Imag-
ing (SBI) techniques (Arbib et al. 2000) to extract Synthetic
ERPs, hypothesized EEG patterns of activity, from the activity
of neural or schema levels computational models (Barrès et al.
2013). This forward modeling approach would enable the
direct test of simulated ERP with empirically collected data.
We also note the attempt by the MEG-SIM project (Aine et al.
2012) to provide a shared database for simulated and recorded
MEG data in order to improve source localization comparison
between models.

The linkage between structure and function is at the heart of
many debates in neurolinguistics focusing on data on white
matter tracts collected using Diffusion Tensor Imaging
methods (DTI) or statistical correlation between BOLD activ-
ity between regions (for a review see Friederici 2009). Re-
cently the Human Connectome Projects started to systemati-
cally collect both DTI and BOLD statistical correlation data to
create a general database of human brain connectivity
(ConnectomeDB) (Marcus et al. 2011; Sporns et al. 2005).
Such a database should provide an increasingly powerful
neuroinformatics tools for the brain based design of the archi-
tecture of neurolinguistic models.

A generally omitted option for anchoring neurolinguistic
computational or conceptual models in the brain is the use of
non-human primate oriented databases. Such databases could
be used, at least partially, based upon ever more developed
theories of the evolution of the neural systems supporting
language processing. Their use however would require the

Table 3 Language related
databases Name and URL Scope Notes

Aphasia Bank Multimedia interactions for
the study of communication
in aphasia

This component of TalkBank system
(talkkbank.org), is aimed at the
improvement of evidence-based
therapy for aphasia rather than at
processing models of language in
which the effects of brain lesions
can be simulated.

http://talkbank.org/
AphasiaBank/

Purdue ASL Database Database of American Sign
Language (ASL) videos and
transcriptions

Still very preliminary but could be
scaled up.http://www2.ece.ohio-state.

edu~aleix/ASLdatabase.htm
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existence of homology databases such as the Neurohomology
Database (NHDB) which used to offer (it has not been
maintained) tools to statistically map macaque and human
brain anatomy(Arbib and Bota 2003). Links to macaque brain
oriented databases would open the doors for neurolinguistics
to develop computational models of neurophysiological re-
cording datasets and of direct white matter tracts analysis as
systematically reported in the Collations of Connectivity data
on the Macaque brain (CoCoMac) (Bakker et al. 2012;
Stephan et al. 2001).

Our work on the TCG model of comprehension has fo-
cused on aphasia and lesion data (though future work will
indeed address fMRI and ERP data). Both aphasic patients’
linguistic performances and lesion data in general have
existing databases. However, most of them are designed as
tools for clinical neurologists more than for neurolinguistics.
This is the case for Aphasia bank (MacWhinney et al. 2011)
which is part of the more general TalkBank project
(MacWhinney 2007). For lesion studies, lesion sites can be
reported using anatomical MRI and stored in brain imaging
databases such as Brain-Imaging Database, BRAID
(Letovsky et al. 1998). The diffuse and idiosyncratic nature
of the lesions makes the generalization of statements based
on such data difficult. Statistical analysis tools of lesion sites
have started to develop in combination with the lesion data-
bases (e.g., Chen et al. 2008). Extending the use of such
databases and tools to neurolinguistics is one of the chal-
lenges we see for neuroinformatics.

Finally, TCG as a production model is related to empirical
findings from eye-tracking experiments (see Lee In preparation b).
In fact, a large number of psycholinguistic studies have used eye-
tracking experiments since the seminal work of Tanenhaus
et al. (1995). Using the visual world paradigm, and in
addition to the investigation of the role of world knowl-
edge in situated language comprehension briefly men-
tioned in Part 1, eye-tracking empirical results have
been at the basis of conceptual models which emphasize
semantic access and thematic role assignment (Mayberry
et al. 2006), planning scope in spoken sentences (Gleitman
et al. 2007), referential domains of spoken language
(Chambers et al. 2004), and so on. However, there exist

neither standardized databases nor generalized formats
for the quantification of eye-tracking data. The lack of
standards and available public resources results in eye-
tracking experiments being analyzed at a small scale (with
limited possibility for pooling data resources into larger
scale meta-analyses) and visual stimuli being hand-crafted
by each researcher with rather arbitrary representational
formats which makes inter-experiment comparisons
arduous.

Models Databasing, Updating and Integration

The field of neurolinguistics is characterized by both the
predominance of conceptual models, and by the diversity
of the existing computational models which span from nat-
ural language processing oriented symbolic systems to neu-
ral network models. This large population of conceptual
models and the variety of computational model types makes
databasing, updating, and integrating models a difficult chal-
lenge for neuroinformatics systems that would want to pro-
vide tools tailored for neurolinguistics. Table 4 provides
links to two model oriented databases. For further discus-
sion, see (Arbib et al. 2013).

Neurolinguistics and Natural Language Processing
Resources

We end with a brief mention of the role natural lan-
guage processing (NLP) oriented resources could play in
neurolinguistic oriented neuroinformatics. Since the ear-
ly 90s and the advent of statistical methods in NLP, the
field has largely divorced from earlier Artificial Intelli-
gence oriented models and from cognitive neuroscience.
Its focus was switched to massive data analyses using
ever more advanced statistical methods. Semantics was
not considered an essential step anymore since many
problems seemed to find their solution in statistical
analysis of data at the level of lexical items or syntactic
categories. This focus on low level features has had two
main consequences: on the one hand the development of
massive corpora of annotated text and of powerful

Table 4 Model oriented databases

Name and URL Scope Notes

BODB Linking processing models with summaries
of empirical data

In addition to comparison of empirical data with simulation
results, BODB accesses models via both a structural ontology
(brain structures) and a functional ontology (brain operating
principles, BOPs) and offers tools for model comparison

Brain Operation Database,

http://nsl.usc.edu/bodb/

ModelDB Documented code for models, primarily those
implemented in the NEURON modeling
environment

For each model, provides instructions on how to run it to get
published results.http://senselab.med.yale.edu/

modeldb
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mathematical tools to analyze them, but on the other hand
the rather limited resources available for semantic model-
ing. The computational tools and corpora are now
readily available for neurolinguistic researchers. A Py-
thon implemented platform such as the Natural Lan-
guage Tool Kit (NLTK) offers most of these tools and
access to over 50 corpora in an easy-to-use interface.

Corpus based statistical analyses of affinities between words
and constructions could offers a quantitative way to understand
the “light semantic” constraints associated with constructions
(Stefanowitsch and Gries 2003). Other databases such as
VerbNet, WordNet, or FrameNet (Baker et al. 1998; Fellbaum
2010; Schuler 2005) also focus on organizing linguistic data
based on semantic patterns (Table 5). These can help initiate

Table 5 NLP Databases and the challenges of their use in neurolinguistics

Name and URL Scope Integration challenges for neurolinguistics

WordNet Natural Language Processing
oriented hierarchical conceptual
ontology.

Use this type of ontologies as a starting point
to develop neurolinguistic oriented databases
whose structure fits our empirical knowledge of
world knowledge organization in the human brain.

http://wordnet.princeton.edu/

VerbNet Public database version of the work
of Levin on verb classes.

Refine these databases by distinguishing
language specific semantics (light semantics)
and world knowledge.

http://verbs.colorado.edu/~mpalmer/
projects/verbnet.html

FrameNet A database focusing on how
words are used in context
based on manually annotated
text. It links words to the semantic
frames they can invoke.

https://framenet.icsi.berkeley.edu/fndrupal/

Penn Treebank Project Database of text annotated for syntactic
structure. Incorporate skeletal parses
showing rough syntactic and semantic
information. A bank of linguistic trees

The statistical focus in NLP has pushed for the
generation of very large scale corpora. However,
some crucial data types for neurolinguistics are
not tackled by NLP that focuses on well-structured
written text. Multimodal data, conversation data, or
sign languages are usually ignored by NLP but
important for neurolinguistics.

http://www.cis.upenn.edu/~treebank/

Table 6 New Neuroinformatics resources called for in this article

Scope Notes

Event-related potential
(ERP) data linked to
linguistic and other
cognitive tasks.

This requires a standard ontology for ERP recordings. One candidate is provided by the Neural
ElectroMagnetic Ontologies (NEMO) project, http://nemo.nic.uoregon.edu/wiki/NEMO, that aims to
create EEG and MEG ontologies and ontology based tools. A related issue is to develop standards for
linking extracting components from ERP signals and linking them to a limited set of brain regions
using, e.g., fMRI data.

NeuroHomology Database
(NHDB) revisited

A new version of a defunct resource to integrate data on human brains and the brains of other species
to establish homologies that support new hypotheses about detailed neurophysiological,
neurochemical and genetic mechanisms that are hard to resolve from the human data alone.

Lesion database linked to
MRI and experimental
paradigm database.

The study of linguistic performances of brain damaged patients and the development of brain based
models from this data would benefit from the creation of a lesion database similar in format to Brain
Map. Crucially, such database should not be limited to aphasics or to other specific impairments as
brain damage analysis would benefit from a better understanding of the loss of functions as whole
rather than multiplying the smaller scopes analyses. An example of this would be the comparative
analysis of aphasia and apraxia in a database to better understand the link between language and
action systems.

Conceptual model ontology
and database

To this day, no database exists that offers an ontology to store and compare conceptual models. BODB
and ModelDB are both oriented towards computational models and the challenge would be more of
integration rather than having one of these databases take over the role to store conceptual models.

EEG and MEG visualization
tools and standardize
head models for display.

Similar to the Talairach Daemon visualization tool (http://www.talairach.org/daemon.html) for
tomographic imaging, a standard head for display of EEG and MEG results would benefit the
neurolinguistic community both in terms of the ease of visual comparison, but also as it would
provide a way to report EEG and MEG results in papers in more uniform table-like way as it
has become standard for fMRI results (using Talairach or MNI coordinates).
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computational neurolinguistic work tackling semantic issues but
an effort to develop similar resources more specifically dedicated
to the computational modeling for neurolinguistics are necessary.
These resources would need to better fit our understanding of the
organization of world knowledge in the brain but also of the link
between such knowledge and linguistic forms. The lack of such
tools hinders the creation of computational neurolinguistic
models as the modelers tend to create their own resources,
usually small scale and handcrafted, which makes model com-
parison difficult in the absence of shared standards.

It is important to note that the NLP oriented corpora still lack
many of the important characteristics of language relevant to
neurolinguistic research. For example, NLP corpora focus on
text data extracted from the web, newspapers or books with little
conversation data. The extraction of semantic ontology from
massive text corpora correspond to a radically different ap-
proach than the more cognitive neuroscience perspective focus-
ing on patterns extracted from the physical world with which an
individual interacts. Finally, only a few languages are represent-
ed (with English being the dominant one). This problem is
epitomized by sign languages which are at the center of many
neurolinguistic debates (Poeppel et al. 2012).With the exception
of the Purdue ASL Database (Wilbur and Kak 2006) that
focuses on American Sign Language, sign languages are
completely ignored by the NLP community.

Conclusion

The transformation of the TCG model of language production
into a TCG model of comprehension to integrate new empirical
data on language comprehension served as a case study to raise
some of what we consider to be the specific challenges modelers
face in the field of computational neurolinguistics, challenges
we believe should be analyzed from the perspective of
neuroinformatics. Table 6 offers a view of the neuroinformatics
resources needed to support the collation of neurolinguistic data
and the summarization of that data into forms that can enter into
the design and testing of neurolinguistic models.

Neuroinformatics offers researchers in neurolinguistics
the possibility to turn many of the difficulties they encounter
regarding data management, model comparison, and collab-
oration, into scientific challenges. We hope that this article
will help foster the communication between these two
scientific communities that are too often unaware of one
another.
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