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a b s t r a c t

Our previous work developed Synthetic Brain Imaging to link neural and schema network models of
cognition and behavior to PET and fMRI studies of brain function. We here extend this approach to
Synthetic Event-Related Potentials (Synthetic ERP). Although the method is of general applicability, we
focus on ERP correlates of language processing in the human brain. The method has two components:
Phase 1: To generate cortical electro-magnetic source activity from neural or schema network models;
and Phase 2: To generate knownneurolinguistic ERPdata (ERP scalp voltage topographies andwaveforms)
fromputative cortical source distributions and activitieswithin a realistic anatomicalmodel of the human
brain and head. To illustrate the challenges of Phase 2 of the methodology, spatiotemporal information
from Friederici’s 2002model of auditory language comprehensionwas used to define cortical regions and
time courses of activation for implementation within a forward model of ERP data. The cortical regions
from the 2002 model were modeled using atlas-based masks overlaid on the MNI high definition single
subject corticalmesh. The electromagnetic contribution of each regionwasmodeled using current dipoles
whose position and orientation were constrained by the cortical geometry. In linking neural network
computation via EEG forward modeling to empirical results in neurolinguistics, we emphasize the need
for neural networkmodels to link their architecture to geometrically soundmodels of the cortical surface,
and the need for conceptual models to refine and adopt brain-atlas based approaches to allow precise
brain anchoring of their modules. The detailed analysis of Phase 2 sets the stage for a brief introduction to
Phase 1 of the program, including the case for a schema-theoretic approach to language production and
perception presented in detail elsewhere. Unlike Dynamic Causal Modeling (DCM) and Bojak’s mean field
model, Synthetic ERP builds on models of networks that mediate the relation between the brain’s inputs,
outputs, and internal states in executing a specific task. The neural networks used for Synthetic ERP must
include neuroanatomically realistic placement and orientation of the cortical pyramidal neurons. These
constraints pose exciting challenges for future work in neural network modeling that is applicable to
systems and cognitive neuroscience.

© 2012 Elsevier Ltd. All rights reserved.
1. Background

In the present section, we briefly look at the advantages and
drawbacks of fMRI and synthetic brain imaging and then briefly
review the use of Event-Related Potential (ERP) data in neurolin-
guistics. To complete the background, we briefly describe how in-
verse and forward models relate ERPs to electrical signals within
the brain.
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1.1. fMRI and Synthetic Brain Imaging

We have previously explored how simulations of neural
networks constrained by data from animal neurophysiology
can emulate adaptive and visuomotor behavior (e.g. Fagg &
Arbib, 1992; Schweighofer, Arbib, & Dominey, 1996). With the
advent of tomographic brain imaging, the lab expanded this
simulation method to develop Synthetic Brain Imaging. Synthetic
PET (Arbib, Bischoff, Fagg, & Grafton, 1995) facilitated modeling
and comparison of saccade generation in primates and humans,
and a similar approach was used to associate a synthetic BOLD
signal with a model of primate imitation (Arbib, Billard, Iacoboni,
and Oztop (2000), see Husain, Tagamets, Fromm, Braun, and
Horwitz (2004), Tagamets and Horwitz (1998) for related studies).
The key idea is to startwith a biologically grounded neural network
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for executing a task set that matches a range of neurophysiological
and behavioral data. A spatial and temporal average over the
simulated absolute value of all synaptic activations across a region
provides a viable prediction of the activation of that region for
brain imaging— thus enabling the use of simulations of biologically
grounded neural networks to yield predictions to be tested against
brain imaging studies. Here we initiate a comparablemethodology
for Synthetic ERP to allow us to provide a bridge between
computational models of fine-grained processes in the brain and
ERP data. We focus on computational models that simulate the
information processing required to perform a given task. As we show
in Section 1.3, this emphasis distinguishes the new method from
Dynamic Causal Modeling (DCM) and Bojak’s mean field model
although certain techniques are common to the three methods.
We concentrate our work on neural network models but we also
discuss schema level computational models. Although the method
should have broad applicability the focus of this paper is on ERP
data related to language processing.

To set the stage we briefly compare three sources of data
for neurolinguistics: lesions, fMRI (or PET), and ERPs. There
has historically been a disconnect between processing models
of neurolinguistics which seek to derive linguistic phenomena
from empirical data and biological constraints (Kempen &
Hoenkamp, 1987), and representational approacheswhich employ
a top–down approach seeking to assign theories of language
structure to biological systems (Lecours & Lhermitte, 1969).
Computational modeling was advanced as a means to reconcile
these methods (Arbib & Caplan, 1979), but because lesion data
were the primary data linking brain and language at that time,
the attempt to assign linguistic processing to specific cortical
regions remained problematic. New techniques for lesion studies
combined with subsequent hemodynamic imaging techniques
allowed the researchers to support neurolinguistic models at the
level of interacting brain regions (e.g. Hagoort, 2005; Hickok &
Poeppel, 2007), but such models often give an all-or-none match
of region to function inconsistent with the dynamics of neural
interactions across the brain. Computational approaches like
Synthetic Brain Imaging are needed to relate such interactions to
hypotheses about detailed neural circuitry or schema interactions.
To extend Synthetic Brain Imaging to simulate higher cognitive
functions such as language for which there are no animal data,
one may explore homologies between the macaque and human
brain as a basis for evolutionary hypotheses that suggest possible
circuitry within areas of the human brain associated with uniquely
human functions (Arbib & Bota, 2003).

1.2. Event-related potentials: A privileged window into how the brain
processes language

Hemodynamic imaging techniques provide an indirect mea-
surement of neuronal activitymediated by themechanisms of per-
fusion and metabolism, resulting in a physiological limit in their
temporal resolution on the order of seconds (Heeger & Ress, 2002).
Unlike PET or fMRI, recordings of neuroelectromagnetic activity
taken by electroencephalography (EEG) and Magnetoencephalog-
raphy (MEG) are reputed to allow one to follow the time course of
neural activity on a time scale of milliseconds rather than seconds
— but at the high price of a drastic loss of spatial resolution. Neu-
roelectromagnetic fields are thought to originate within the apical
dendrites of cortical pyramidal neuron populations synchronously
engaged in excitatory depolarizations and inhibitory hyperpolar-
izations in postsynaptic potentials (EPSPs and IPSPs respectively)
(Niedermeyer & Silva, 2010). Unlike the radial symmetry exhib-
ited by their basal dendrites, the linear orientation of the pyrami-
dal cell’s apical dendrites provides the basis for generation of a net
dipole moment during EPSPs and IPSPs (Ritter, Vaughan, & Sim-
son, 1983). The polarized geometry of the pyramidal cell’s apical
dendrites is repeated at the population level through the organi-
zation of pyramidal cells into a palisade formation where the axes
of the cells’ dendritic trees parallel one another perpendicularly to
the cortical surface (Nunez & Silberstein, 2000, and see also Ap-
pendix B). The rationale for viewing EPSPs and IPSPs rather than
action potentials as the electrophysiological phenomenon under-
pinning EEG-recorded scalp potentials is based on the recogni-
tion that only synchronous (de)polarizations of neural populations
would be able to produce measurable signals at the scalp. While
action potentials have a significantly larger amplitude (100 mV vs.
10mV), the PSP’s time course is longer in duration (10ms vs. 1ms)
and thereby allows more opportunity for synchronization. Such
electrical summation plus relative proximity to the scalp satisfies
the theoretical conditions for the activity of cortical pyramidal neu-
rons to generate the electromagnetic fields perceived on the scalp
surface (Lopes da Silva & Van Rotterdam, 1987).

An encephalogram is obtained by recording an array of poten-
tials from leads attached at various places on the scalp (i.e., exter-
nal to the head) over a certain time period. ERPs are extracted from
the encephalogram by averaging recordings of signals at each lead
over a number of trials using the same task and with recordings
time-locked to stimulus onset. The challenge for interpretation of
the ERP is to correctly divide the average waveform into various
components that may be viewed as measurements of distinct cog-
nitive processes relevant to the task at hand.When researchers cite
the presence of a given ERP component in response to an experi-
mental stimulus (dotted line in Fig. 1), they are generally referring
to a statistically significant increase in the component’s intensity
compared to its baseline intensity observed with a control stimu-
lus (solid line in Fig. 1).

From 1980 onwards, ERPs have supplied an important method
of investigation for neurolinguistic research (see Fig. 1 for exam-
ples in German). The first significant contribution came with the
discovery of an increased negativity (shown as an upward deflec-
tion in ERP displays!), the N400 event-related potential, which
occurs approximately 400 ms after the start of presentation of a
semantically anomalous word within a sentence (Kutas & Hillyard,
1980), suggesting that the N400 may signal ‘‘reprocessing’’ of se-
mantically anomalous information. (Osterhout & Holcomb, 1992)
saw an increased positive brain potential 600 ms (P600) after the
onset of wordswhichwere syntactically inconsistent with the pre-
ceding words of the sentence. Furthermore, final words in sen-
tences typically judged to be unacceptable elicited an N400-like
effect, relative to final words in sentences typically judged to be
acceptable. In this way, ERPs offer precise timing data, but the dis-
tribution of potentials across the scalp does not support a con-
fident inference of where in the brain these changes are elicited
(more on this when we discuss Fig. 4). A number of neurolinguis-
tic models thus seek to integrate the functional localization from
tomographic imaging with the functional time course from ERP
recordings and thereby arrive at a spatiotemporal account of vari-
ous functional components of language processing. However, such
an account does not address the issues of what information is rep-
resented in diverse brain regions and how they interact with each
other in language processing. As we shall later spell out in detail,
this gap motivates our initial work on Synthetic ERPs presented
here, seeking to relate ERPs to detailed processing models.

1.3. Synthetic ERP in comparison to dynamic causal modeling and
other ERP modeling approaches

Perhaps the ERPmodeling approachwithmost in commonwith
Synthetic ERP is Dynamic Causal Modeling (DCM). The focus of this
section, then, is to not only chart those commonalities but also
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Fig. 1. Three language-related components in the ERP: (a) the semantic N400, (b) the syntactic early left-anterior negativity (ELAN), and (c) P600. Solid lines represent the
condition for a correct word, and dotted lines the condition for an anomalous word.
Source: Adapted from Friederici (2002).
make explicit the ways in which our approach diverges from DCM.
(In Table 1 we will offer an explicit comparison of Synthetic ERP
not only with DCM but also with Bojak’s mean field model.) To
preview what follows, the difference turns on the word ‘‘causal’’.
For DCM, the issue is ‘‘What aggregated measures of underlying
neural activity could cause the observed ERP recordings?’’ whereas
Synthetic ERP is doubly causal: ‘‘(1) What patterns of interaction
in neural circuitry could cause the observed behavior (and, where
available, explain single-cell recordings)?; and (2) Could the
aggregate activity of neurons in the circuitry so modeled cause the
observed ERP recordings?’’

As previously mentioned, current models of neurolinguis-
tic processing seek to integrate the temporal and spatial infor-
mation obtained from electromagnetic recording and hemody-
namic imaging respectively. To accomplish this integration, re-
searchers have sought to model different ERP component’s ‘‘neu-
ral generators’’ through the use of equivalent current dipoles
whose location, orientation and amplitude are considered to ap-
proximate the synaptic activity of pyramidal cells in some re-
gion or patch of cortex (see Appendix B for a more thorough
presentation of the current dipole model). The attempt to in-
fer generators from the scalp distribution of ERPs, commonly
called the inverse problem, has long been recognized as an ill-
posed problem (Helmholtz, 1853) since many different patterns
of neural activity can in theory result in similar EEG record-
ings (Nunez & Srinivasan, 2005). Accordingly, the use of a priori
constraints (which may be neurologically unrealistic) is required
to generate a unique solution. Numerous approaches to the in-
verse problem have been developed including parametric ap-
proaches (Miltner, Braun, Johnson, Simpson, & Ruchkin, 1994),
non-parametric approaches (Pascual-Marqui, Michel, & Lehmann,
1994), and constrained solution space approaches using PET or
fMRI imaging (Bohland, Bullock, & Guenther, 2009; Phillips, Rugg,
& Friston, 2002), andmuch energy has been spent comparing their
various merits and the situation-dependent applicability of their
respective a priori constraints (Grech, Cassar, Muscat, Camilleri, &
Fabri, 2008; Michel et al., 2004). However, the forward problem of
going from a set of dipoles via a representation of brain/skull/scalp
geometries and conductivities to yield scalp potentials is well-
posed (though, as we shall see later, representing brain/skull/scalp
geometries is a major challenge).

Our goal for Synthetic ERP consists in developing computational
tools to link biological neural network models of brain functions
to quantitative predictions of the EEG recordings generated by the
neural activity in such models. The ‘‘biological’’ neural network
approach differs from the ‘‘artificial’’ neural networks approach
by its insistence that models should be constrained by biological
data including: accurate characterization of discrete cell types,
anchoring of sub-networks within specific brain regions, and
connectivity structures reflecting the known connectivity of the
brain. In addition, such models should be causally complete
information processing models. By this we mean that the purpose
of the models should be to simulate the behaviors of the
organism performing a given motor, sensory, or cognitive task.
This distinguishes Synthetic ERP from approaches which simulate
neural masses solely in terms of fitting ERP data rather than
modeling networks that mediate the relation between the brain’s
inputs, outputs, and internal states in executing a specific task.
For example, the behavior of tens of thousands of neighboring
neurons (neural masses) might be modeled by a few time varying
mesoscopic parameters. So called neural mass or mean field
models have been especially important in the field of EEG signal
modeling with a focus on replicating epileptic seizures as well as
the richness of known electrocortical rhythms. A comprehensive
review of such models can be found in Deco, Jirsa, Robinson,
Breakspear, and Friston (2008).

Table 1 presents a comparison of two EEG signal for-
ward models with our Synthetic ERP approach. DCM and
Bojak’s mean field model were chosen because they repre-
sent two different modeling approaches which share a com-
mon goal with Synthetic ERP: to develop biologically realistic
forward models. They differ in that DCM focuses on the inverse
problem while Bojak et al. focus on the anatomical details of
the forward model. We note that Sotero, Trujillo-Barreto, Iturria-
Medina, Carbonell, and Jimenez (2007) developed an approach
very similar to that of Bojak. The models are compared based on
4 types of characteristics: their computational approach, their use
of anatomical constraints, the way the hypotheses represented by
the models are linked to empirical evidence, and finally their suit-
ability as inversemodels for EEG neuroimaging source localization.

In terms of computational approaches, both DCM and Bojak’s
model use a network ofmesoscopic neuralmasses (David& Friston,
2003; Jansen & Rit, 1995) or mean field models (Liley, Cadusch, &
Dafilis, 2002) whose purpose is to account for large scale neural
dynamics. The connections between neural masses reflect large-
scale whitematter connectivity but also, only in case of Bojak et al.,
local connectivity between neighboring cortical patches. Synthetic
ERP on the other hand proposes to link causally complete neural
networksmodels designedwith the purpose not to simulate large-
scale activation patterns but instead to simulate the information
processing required to perform a cognitive task. Both long and
short scale neural connectivity constraints can be incorporated in
such networks.

The three models vary in their use of anatomical constraints.
DCM models tend to put less emphasis on cortical topology and
head geometry. However this is less an intrinsic limitation of
the approach than a consequence of their focus on the Bayesian
framework for hypothesis testing (see below). In contrast, Bojak’s
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Table 1
Comparison of three computational approaches for EEG/ERP forwardmodeling. From left to right: Dynamic Causal Modeling (DCM) (David et al., 2005, 2006); the mean field
model described by Bojak et al. (2010); and finally our own Synthetic ERP approach. The models are compared according to characteristics related to their computational
approach, their use of anatomical constraints, their mode of hypothesis testing including whether monkey neurophysiology data can be used to build hypotheses, and finally
their emphasis (or lack thereof) on inverse modeling.

Characteristics Models
DCM Bojak et al. (2010) Synthetic ERP

Computational
approach

General goal Biologically sound forward model
of ERP usable in a Bayesian
inverse model framework

Biologically sound whole
brain forward model of EEG
patterns

Biologically sound synthetic read-out
of ERP signals from brain anchored
network models

Modeling focus Large scale neural dynamics Large scale neural dynamics Causally complete information
processing model

Implementation level Neural mass Mean field Biological neural (or schema) networks

Anatomical
constraints

Current dipole modeling Few dipoles Dipole distributions for the
whole cortex

Dipole distributions for relevant brain
regions

Source waveform Read-out from pyramidal cell
neural mass activity

Read-out from pyramidal
cell neural mass activity

Read-out from pyramidal cell synaptic
activity

Anatomical constraints on
the dipole sources

Position only Position and orientation
based on anatomically
sound cortical geometry

Position and orientation based on
anatomically sound cortical geometry

Link to brain atlases Not discussed Not discussed Emphasizes the issue of variation in
cortical surface parcellation ontologies

Structural connectivity
within a brain region

Brain regions are modeled by a
single dipole

Realistic connectivity
between distributed dipoles

Based on the connectivity of the neural
net layer representing the region

Structural connectivity
between brain regions

Based on existing literature Based by homology on the
CoCoMac database for the
macaque connectome

Based on existing literature

Anatomical constraints on
the conduction volumes

Spherical head model Realistic head model Realistic head model

Hypothesis testing
Free parameters estimation Probability distributions through

Bayesian inference
Single values Single values

Model comparison Bayesian model comparison
(accounts for model complexity)

Based on capacity to
simulate empirical results

Based on capacity to simulate
empirical results

Incorporate monkey
neurophysiology data

No Connectivity only Connectivity and single-unit recording

Neuroimaging use Suitable for inverse modeling Yes No No
model puts a heavy emphasis on anatomical constraints for
sources and volume conductor modeling. Sources are defined
as distributions of current dipoles constrained in position and
orientation by the geometry of the cortex. In addition, it uses
the CoCoMac database for the macaque connectome (Stephan
et al., 2001) to generate, by homology, the patterns of connectivity
between human brain regions. Finally, Synthetic ERP follows Bojak
and insists on the role of cortical geometry in current source
modeling. In contrast to Bojak’s whole brain modeling approach,
Synthetic ERP only models those cortical regions implemented
in the underlying neural network model, and in doing so tackles
often ignored quantitative issues regarding the role that cortical
surface parcellation ontologies, brain atlases, idiosyncratic cortical
variations, and neurohomologies (in the case of the comparison of
human and non-human primate brain structures) should play in
modeling EEG signals.

All three approaches use computational models to express hy-
potheses. Synthetic ERP and Bojak et al. simply focus on generating
the simulated EEG data associated with a given model. Such sim-
ulations can then be compared to empirical ERP results that sup-
port or invalidate the hypotheses made by the modeler. Embed-
ded within a Bayesian inference framework, DCM has been specif-
ically developed to allow for an optimal use of empirical evidence,
e.g. ERPs, to infer an inverse solution defined as a neural mass
network model. David, Maess, Eckstein, and Friederici (2011) and
Yvert, Perrone-Bertolotti, Baciu, and David (2012) applied DCM to
ERPs resulting from various linguistic tasks (prosodic and syntac-
tic violations, phoneme detection in pseudo-words, and semantic
categorization). They were able to optimally assign the evidence
provided by ERP measurements to highlight the role that the sub-
cortical thalamic relay could play in language comprehension as
well as the potential structure and change of effective connectivi-
ties in various language-related neural pathways. Our current aim
is to link forwardmodeling to computational neural networks that
can causally explain an observed behavior as opposed to compu-
tational models of neural dynamics. While this approach does not
immediately lend itself to discussions of optimal hypothesis test-
ing, it underscores the great potential for incorporating data from
non-human primate neurophysiology within neurolinguistic com-
putational models. The focus of Synthetic ERP on such models will
also facilitate framing neurolinguistic modeling into an evolution-
ary perspective that makes full use of both human and non-human
primate data.

Finally, onlyDCMhas beendesigned specifically to be used as an
inverse model for neuroimaging use. Working outside the inverse
modeling framework relaxes many assumptions commonly made
to constrain the ill-posed inverse problem such as the limitation in
the number of current sources.

Our Synthetic ERP approach follows in Bojak et al.’s footsteps
by insisting on the importance of cortical geometry, but then
goes beyond Bojak et al. in assigning computational models of
neural or schema networks to the various brain regions, and
insists on linking such networks to a 3D model of the region
suited for forward EEG modeling. Departing from the use of
neural masses and looking into the possibility of linking neural
networks to ERP data, the Synthetic ERP approach insists on the
relevance, from an evolutionary perspective, of such models that
have been exhaustively used to model processing in the monkey
brain. In this paper our methodology sidesteps the ill-posedness
of the inverse model by showing how computational models of
linguistic processesmay be linked to dipole distributionsmodeling
the neural electric activity resulting from the simulation of such
processes, and how these in turn may — via forward modeling
— yield scalp distributions of ERPs that can be tested against
neurolinguistic data. Unfortunately, our analysis will reveal that
current neurolinguistic models are inadequate for such detailed
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Fig. 2. A conceptualmodel of the time course and localization of activation of left hemisphere activity in response to hearing aword during the comprehension of a sentence.
The right hand half will be referred to as ‘‘the 2002 model’’. The boxes represent the functional processes, the ellipses the underlying neural correlates. Abbreviations:
BA, Brodmann’s area; ELAN, early left-anterior negativity; IFG, inferior frontal gyrus; MTG, middle temporal gyrus; MTL, middle temporal lobe; PET, positron imaging
tomography; STG, superior temporal gyrus.
Source: Adapted from Friederici (2002).
analysis, thus posing new challenges for both modeling and
empirical studies.

2. ‘‘The 2002 model’’: Friederici’s 2002 model of auditory
sentence processing

2.1. A basic feedforward model of the timing and localization of
processes involved in integrating the auditory form of a word into the
comprehension of a sentence

Our aim in this paper is to introduce a new methodology,
Synthetic ERP, and show its relevance to providing fine scale
models (at the level of neural or schema networks) of brain
processes underlying human use of language. To frame the
issues involved and the challenges that our approach makes
explicit for future research in neurolinguistics, we will focus on a
conceptual model (as distinct from a processing model developed
for computer simulation) of the temporal activation of brain areas
during auditory sentence comprehension developed by Friederici
(2002). Subsequent work has refined some aspects of this view
(see Friederici, 2011, for her own update) and there are now
many data from other laboratories that complicate the picture, but
the 2002 model remains a valuable benchmark for the approach
offered here. The key idea in forming the 2002 model was this:
(a) Assess ERP data to time-stamp processes against the beginning
of a word with certain characteristics relative to the preceding
words of the sentence; and (b) seek other data (whether from
PET, fMRI, TMS or lesion studies) that suggests the localization of
the posited process. While some of the (a)–(b) matches are well-
established, others remain debatable becausewe stress that (i) ERP
data provides precise timing but offer little or no clue as to the
source of an observed peak of potential; (ii) the non-ERP data may
localize to the level of a general brain region but not to the level
of specific circuits or subregions, and in any case cannot specify
events with much less temporal precision than 1 s; (iii) different
studies use different stimuli, making it unclear whether they elicit
the same pattern of neural activity, and (iv) most of the time,
multiple brain regions will be actively involved, though to varying
degrees.

Fig. 2 shows the localization and timing of left hemisphere
processes. The model posits four phases:
Phase 0 (0–100 ms): Acoustic analysis and phoneme identification
correlate with the well-characterized auditory N100 ERP compo-
nent.
Phase 1 (100–300 ms): The initial syntactic structure is formed on
the basis of information about the word category. An Early Left-
Anterior Negativity (ELAN) correlateswith rapidly detectableword
category errors.
Phase 2 (300–500 ms): Lexical-semantic and morphosyntactic
processes support thematic role assignment (e.g., determining
which noun phrase denotes the agent of the action described
by the verb). A Left-Anterior Negativity (LAN) correlates with
morphosyntactic errors. In thismodel, the N400 occurs in response
towords that cannot be integrated semantically into the preceding
context.
Phase 3 (500–1000 ms): The different types of information are
integrated. A late centro-parietal positivity, the P600, occurs
between 600–1000 ms and correlates with outright syntactic
violations (following the ELAN) and with ‘garden-path’ sentences
that require syntactic revision, andwith processing of syntactically
complex sentences.

On this view (see Friederici’s Phase 1), linking a new word into
a syntactic phrase structure is autonomous and precedes semantic
analysis in the early-time windows; these processes interact only
at later times. However, word-forms can be ambiguous as to
syntactic category — e.g., glass can function as adjective or noun.
Thus, semantic priming may dominate over syntactic category
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in analyzing the word form; whereas in other cases multiple
interpretations may be needed (at least transiently) to continue
the parse, as in deciding how glass is being used in the glass is half
full versus the glass pendant is beautiful. All this suggests possible
refinements of the 2002 model, but these will not concern us
explicitly in the present paper since our aim here is to establish
a new methodology.

The model is conceptual rather than computational in that it
does not describe the computations within each region, and does
not assess what data must be ‘‘in play’’ from earlier words of the
sentence (and the broader context) to affect how the current word
is processed. Although the left hand sequence highlights memory
processes and the processing of the current word at right is posited
to updatememory structures, themodel showsonly a forward flow
from auditory input without showing how the working memory
induced by earlier words of a sentence feeds back to affect the
processing of the current word. In particular, there is no way for
semantic features (Phase 2) to contribute to the initial updating
of syntactic structure (Phase 1) — rather, it is only in Phase 3 that
problems in syntactic analysis are claimed to trigger processes
of reanalysis and repair that may invoke semantic features. Note
how different aspects of each word are evoked in different regions
during different phases — suggesting a distributed representation
of the lexicon but one whose components are accessed in serial
fashion. As Friederici comments (personal communication). ‘‘The
2002 paper model is based on the empirical data then available,
and the fact that there are no arrows linking on-line processes
to working memory represents the state of the art at that time.
There were separate data on working memory activation and data
on on-line processes, but not on their interplay’’. Given this, a
future challenge is to understand how detailed modeling can offer
hypotheses that build on more recent empirical data to achieve
some measure of causal completeness at the neural or schema
network level and then offer ideas for new experiments.

Turning to the cortical regions flagged in Fig. 2 (see Friederici,
2002, for the primary references), Friederici notes the classical
view that Broca’s area is the locus of syntax but argues that
increased fMRI activation of BA 44 is triggered by syntactic
memory but not by complexity, whereas local phrase-structure
building seems to recruit the inferior tip of BA44. Such conclusions,
however, are based on the structure of the sentences to which
subjects are exposed, not on an explicit computational model of
parsing. Studies investigating semantic processes at the sentence
level report a variety of activation loci, including the left inferior
frontal gyrus (IFG, comprising BA 45/47), the right superior
temporal gyrus (STG, which includes BA 22) and the left middle
temporal gyrus (MTG, which includes 21 and 37) as well as the
left posterior temporal region. However, activation of BA 45/47
appears to depend on the amount of strategic and/or memory
processes required.

Friederici (2011) updates this analysis in light of recent data.
She shows how the right hemisphere processes prosody as a
complement to the syntactico-semantic processes of the left
hemisphere, citing data showing that pitch discrimination in
speech syllables correlates with increased activation in the right
prefrontal cortex, violations of pitch for lexical elements in a tonal
language modulate activity in the left frontal operculum adjacent
to Broca’s area, and processing of suprasegmental prosody involves
the right superior temporal region and fronto-opercular cortex.
Other data suggest that right hemisphere prosodic processes
can influence left hemisphere syntactic processes. However, such
extensions are outside the scope of this paper, andwewill focus on
the left hemisphere processes shown in Fig. 2. In what follows, the
term ‘‘the 2002 model’’ will refer to the model shown on the right
side of Fig. 2 inwhich the contributions ofworkingmemory are not
made explicit, and the flow of information is purely feedforward
(the downward arrows of Fig. 2).
Fig. 3. Five modules and four processing phases extracted from the 2002 model
and implemented within Synthetic ERP. The cortical regions depicted within each
of the five modules are left lateralized, except for those generating the N100.
Two language modules supporting linguistic processing and ERP generation are
activated during Phase 2 (LAN shown at left; those for N400 shown at right).
Abbreviations: LH, left hemisphere; RH, right hemisphere; BA, Brodmann’s area;
PAC, primary auditory cortex; PT, planum temporale; FOP, frontal operculum; aSTG,
anterior portion of the superior temporal gyrus; pSTG/STS, posterior portion of the
superior temporal gyrus and superior temporal sulcus;mSTG,middle portion of the
superior temporal gyrus; pMTG, posterior portion of the middle temporal gyrus;
mMTG, middle portion of the middle temporal gyrus.

2.2. Data on functional anatomy

In recent work, Friederici (2011, 2012) describe a predomi-
nantly left-lateralized temporo-frontal network of cortical regions
that support various stages of syntactic phrase structuring and se-
mantic integration. Regions are definedusing a combination of PET,
fMRI, inverse MEG source modeling, and lesion studies. In addi-
tion, functional parcellation schemes are devised for some of these
regions based upon DTI tractography (Raettig, Kotz, Anwander,
Friederici, & von Cramon, 2007) and Granger causality mapping of
DTI and fMRI data (Upadhyay, Silver, Knaus, Lindgren, & Ducros,
2008).

In what follows, we use the term ‘‘module’’ for any group of
brain regions or subregions postulated to work together in some
subfunction of (language) processing. The model shown in Fig. 3
provides the neuroanatomical basis for the 2002model by defining
five functional language modules composed of cortical regions in
the perisylvian language areas and connected via four major white
matter fiber tracts (Friederici, 2009). We add a number of post-
2002 references, and note that some of their data suggest modi-
fications in the 2002 module but reiterate that such refinements
are extraneous to our current goal, the grounding of the method of
Synthetic ERP.

The first module (Phase 0, N100, around 100 ms) is subserved
bilaterally by the primary auditory cortex (PAC) and the planum
temporale (PT). These areas are thought to support the analysis of
phonemes (Binder, Frost, Hammeke, Bellgowan, & Springer, 2000;
Pantev et al., 1988). Bridging the Sylvian fissure, the next module
(Phase 1, ELAN, peaking between 100–300ms post stimulus onset)
is considered responsible for phonemic concatenation (DeWitt &
Rauschecker, 2012) and incorporates the anterior STG and the



72 V. Barrès et al. / Neural Networks 37 (2013) 66–92
frontal operculum connected by the ventral uncinate fasciculus.
The posterior STG (pSTG) along with BA 44 comprise a module
(Phase 2, LAN occurring in the 300–500 ms window) through
connections mediated by the dorsal pathways through the arcuate
fasciculus and the superior longitudinal fasciculus. This module
is thought to be involved in syntactic processing (Kuperberg,
McGuire, Bullmore, Brammer, & Rabe-Hesketh, 2000; Newman,
Lee, & Ratliff, 2009). The most distributed module (Phase 2, N400,
around 400 ms) is claimed to process semantic information and
incorporates middle and posterior portions of the STG, middle
and posterior portions of the MTG, BA 47, and BA 45 (Vigneau,
Beaucousin, Hervé, Duffau, & Crivello, 2006) connected by the
ventral extreme capsule fiber systems (Weiller, Bormann, Saur,
Musso, & Rijntjes, 2011). Lastly (Phase 3, P600, around 600ms post
stimulus), the integration of syntactic and semantic information is
carried out by a module including the pSTG and posterior superior
temporal sulcus (pSTS), as well as the basal ganglia. Thalamic
contributions to these stages of language comprehension have
also been explored (David et al., 2011; Wahl, Marzinzik, Friederici,
Hahne, & Kupsch, 2008), but are not considered in the current
approach.

The 2002 model and its later iterations explore a larger body
of cortical and subcortical language-related regions, but only
those directly associated with the generation of linguistic ERP
components were selected for Synthetic ERP implementation.
However, future ‘‘doubly causal modeling’’ (i.e., using neural and
schema networks to explain single cell data and behavior as well
as to drive a forward model to generate ERPs) will have to take,
e.g., thalamic and basal ganglia activity into account, as indeed
we have done in our classic model of control of saccadic eye
movements (Dominey & Arbib, 1992; Dominey, Arbib, & Joseph,
1995).

3. The two phases of Synthetic ERP: A preliminary computa-
tional framework

Synthetic ERP is ameans to use computational models of neural
or schema networks to predict the scalp potentials associated with
ERPs. The method has two phases:
Phase 1: To generate amplitudes for dipole distributions from
processing models for neurolinguistics based on neural networks
or schema networks;
Phase 2: To apply forwardmodeling, based on a realistic anatomical
model of the human brain and head, to compute Synthetic ERP
activity which can be tested against available ERP data.

Later in the paper, we offer a preliminary perspective on Phase
1, but it is Phase 2 that receives detailed attention, and computer
simulation, in the remainder of the paper. The present section
offers a preliminary theoretical framework that makes explicit
some key computational issues to be tackled in order to express
ERP and localization data in a form which makes it a target suited
for the Synthetic ERP methodology.

3.1. A preliminary framework

Let us use [T1(A), T2(A)], etc., for the period during which
region A is posited to make its contribution to the current epoch
of processing. The nature of such contribution in the general
information processing scheme depends on the hypotheses made
by a given model. This is roughly the period during which the
region’s activity contributes to the ERP. In formalizing the data, we
seek to assign a dipole amplitude time course to the region A for
that interval,

dA : [T1(A), T2(A)] → dA(t)
which assigns to each time t the amplitude dA(t) of the dipole
oriented in the direction orthogonal to the cortical surface of
A, and related to the synaptic activity of pyramidal cells. (More
generally, we may need to use multiple dipoles, rather than one
depending on the size of the region. More on this in later sections.)
The forward model then computes the electric field as a function
of time resulting from such current dipole activity. This method
can be applied to all the relevant regions and the electric fields
generated by their respective activities can be added to yield the
complete ERP for that epoch (on this additive nature of the field,
see Section 4.3).

The precise definition of the function dA will be the focus of
Phase 1. However, the current general specifications of dA already
imply that neural network (and schema network) models must
incorporate the following constraints: (1) They must be tied to
the 3-dimensional geometry of the cortex in order to derive the
location and orientation of the dipole, (2) They should subdivide
their neuron models into different cell-types that allow the read
out of synaptic activity from pyramidal cells only.

In many ERP studies of language processing, the epoch starts
with the onset of presentation of a word. In a feedforward model
such as the 2002 model, it is assumed that the state of the brain
at the start of the epoch may be ignored with one exception —
that knowing whether the word is semantically or syntactically
anomalous yields different values for dA in some brain regions.

(a) In cases of divergent feedforward processing (i.e., a region
receives input from at most one other region, and there are no
loops), the timing in a chain A → B → C goes something like
this:

t(A): time required after receiving coherent input for A to reach
a degree of confidence for its processing of the current data.

t(A → B): time required for a coherent output from A to affect
activity in B.

t(B): time required after receiving coherent input for B to reach
a degree of confidence for its current processing.

t(B → C): time required for a coherent output from B to affect
activity in C .

Here T1(A) = 0, T2(A) = t(A); T1(B) = T2(A) + t(A →

B); T2(B) = T1(B) + t(B), etc.
(b) In general, feedforward processing might involve confluent

inputs, so that C receives input from A and B. In this case, a
descriptive model might allow one to conclude that C can carry
out its computation with the input from either A or B alone, or C
might require both inputs. In the first case

T1(C) = min[T2(A) + t(A → C), T2(B) + t(B → C)]

and in the second case

T1(C) = max[T2(A) + t(A → C), T2(B) + t(B → C)]

but many other cases could be considered.
(c) However, even more generally there will be loops in the

computation and it may well be that in simple cases a region C can
complete its computation in feedforward mode, whereas in other
cases it may need to get further input both bottom up (this is like
a switch from the first case to the second in (b)) and top down —
and this may involve input from regions encoding states achieved
in processing earlier words of the input, and interaction between
states ‘‘at multiple levels’’ initiated by receipt of the current word.

The 2002 model is a case of divergent feedforward processing.
Later models by Friederici et al. have slightly relaxed this serial
requirement, adopting a cascade type model which allows for
some parallel activity and temporal overlap1 (Friederici, 2012;

1 Such overlap can be found in the processing of semantic and verb-
argument information (N400) and morphosyntactic information and thematic role
assignment (LAN) which is portrayed as occurring partly in parallel during Phase 2
of the 2002 model (see Phase 2 of Fig. 3).
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Fig. 4. Grand average ERPs when participants judged sentences for overall correctness, with averages calculated relative to a 100 ms post-stimulus onset baseline. The
display shows ERPs for the semantic violation condition (e.g. ‘Der Vulkan wurde gegessen’ — ‘The volcano was eaten’) as compared to the correct condition (e.g. ‘Das Brot
wurde gegessen’ — ‘The bread was eaten’), where in the examples the origin of the x-axis corresponds to the onset of gegessen and negative voltage is plotted upwards. The
rectangles at left display the results of MANOVAs comparing the incorrect condition to the correct condition for each electrode, starting at the onset of the participle. Shaded
bars indicate significant effects (p < 0.05) whenever two or more successive 50 ms windows revealed a reliable effect.
Source: Adapted from Hahne and Friederici (2002).
Friederici & Kotz, 2003). It is our conviction — going back to the
‘‘neuralization’’ (Arbib & Caplan, 1979) of the classic HEARSAY
model of speech understanding (Erman, Hayes-Roth, Lesser, &
Reddy, 1980; Lesser, Fennel, Erman, & Reddy, 1975), and reinforced
by current computational modeling — that the general models of
case (c) are the rule rather than the exception, and it is this which
motivates the need for Phase 1 of Synthetic ERP — using detailed
processing models to infer dipole activity dA(t) for diverse cortical
areas A in cases where complex interactions underlie the response
to different task conditions. Such a model would yield individual
trial-by-trial ERP values, butwould then be averaged appropriately
across an ensemble to yield predictions to be tested against the
empirical data.

3.2. The challenge of timing data for the 2002 model

To illustrate the distinction between the descriptive time course
of the 2002 model and the generative time course needed to
implement a computational framework for Synthetic ERP, consider
the N100 component which signals the acoustic processing of
Phase 0. At the conceptual level it is enough to point out that the
waveform peaks around 100 ms and thereby establishes the time
window for phonemic processing ascribed to the bilateral primary
auditory cortices by MEG (Pantev et al., 1988) and fMRI (Binder
et al., 2000). However, the N100 component is not monolithic,
so that the early phonemic processing stage could be better
characterized by a combination of temporally and functionally
distinct subcomponents with putative sources in and around
primary auditory cortex (Naatanen & Picton, 1987; Scherg, Vajsar,
& Picton, 1989). McCallum and Curry (1980) described three
such subcomponents; N1a generated bilaterally in the auditory
cortex on the dorsal surface of the temporal lobes with a fronto-
central peak at around 75 ms, N1b a component of indeterminate
neural origin peaking at the vertex electrodes around 100 ms,
and N1c generated in the STG with a laterally distributed peak
around 150 ms. A similarly complex cascade of cortical activation
is implicit in other components such as the N400 (Kutas &
Federmeier, 2011). While in this cautionary mode, consider the
N400 of Fig. 1(a). It has been described as a small negativity
around 400 ms that relates to a semantic anomaly. (There are
other linguistic correlates as well, but they need not detain us
here.) However, what we really see is a small N400 when there
is no anomaly, and an N400 which lasts longer and rises higher
when there is a semantic anomaly. Thus a computational model
adequate for Phase 1 would not simply turn a dipole on if there
is a semantic anomaly, but would rather show in some detail how
semantic processes which are employed normally will be placed
under stress when a semantic anomaly occurs, and then show how
that translates into a time course for dipoles that forwardmodeling
(Phase 2) can then use to explain the variation in N400 timing and
magnitude seen in Fig. 1(a).

To further highlight the challenges of Synthetic ERP simulation,
consider Fig. 4 which shows one portion of the ERP results from a
study (Hahne & Friederici, 2002) which provides an experimental
basis for Friederici’s syntax-first serial approach to neurolinguistics
and the resulting time course of the 2002 model. The challenge
for Synthetic ERP is not simply to produce a single waveform as
shown in Fig. 1 (the N400 arrow in Fig. 4) but also to obtain,
to some acceptable degree of approximation, the distribution of
activity seen across the various scalp electrodes. Note particularly
the shaded rectangles at left of Fig. 4which show for each electrode
the time interval during which there is a significant difference
between the incorrect and the correct condition. Our point is that,
interesting though such an analysis of significance may be, our
concern is to relate ERPs to a model of the underlying processing,
and for this it is the actual waveforms in the two conditions that
must be predicted (to some level of fidelity), not just the time
course in which the stated difference is significant.

Timescales of activation must be much more clearly delineated
than was required in synthetic PET and fMRI. Whereas the low
temporal resolution of fMRI tends to superimpose all stages of
activation and communication within an active module of cortical
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regions, the instantaneous temporal resolution of ERP signals
necessitates that signal resolution and propagation effects be taken
into account. Signal propagation effects can be attributed to white
fiber conductivity delays which can range from 10–50ms (Aboitiz,
Scheibel, Fisher, & Zaidel, 1992; Matsumoto, Nair, LaPresto, Najm,
& Bingaman, 2004). We are confronted with a situation where
signals are clearly propagating through the different elements of
the 2002 model’s temporo-frontal language network well before
those regions contribute the ERPs with which their functions are
associated. In this case, the conduction delays of feedforward signal
propagation are inadequate to explain what is going on. For this
reasonwe earlier introduced equations like T1(B) = T2(A)+t(A →

B) to emphasize that propagation delays sumwith processing time
in a region before it achieves a coherent output that affects other
regions. Such processing time should incorporate constraints on
the temporal characteristics of post-synaptic potentials buildup
and their impact on the activity profile of a brain region.
Matsumoto et al. (2004) measured conduction delays between
Wernicke’s and Broca’s areas of 22–36 ms, but conjectured that
the early end of that response window, mediated by the thickest
fibers, may have been lost due to an artifact in the recording data,
thereby bringing the average latency closer to the 20 ms window
previously mentioned. This ∼20 ms conduction delay is also in
accordance with evaluations of white matter fiber conductivity
(Waxman & Swadlow, 1977) and anatomical properties (Bishop &
Smith, 1964). Thus the present implementation of Synthetic ERP
will assume a 20 ms propagation delay prior to the onset of each
processing phase. Later iterations will explore a more nuanced
conduction delay scheme.

4. Phase 2 in detail: From areas of cortical activity to ERPs

We now turn to a detailed presentation of Phase 2 of the
Synthetic ERP model, showing what is required to specify the
cortical regions involved in a task with sufficient accuracy to allow
first the computation of dipole sources, and from there of observed
ERPs.Wewill use the 2002model tomake these challenges explicit
when detailed computation of the forward model is invoked.

4.1. Forward modeling in the Synthetic ERP framework

Precise forward modeling requires both a head model and a
processing model. The head model requires head meshes to define
the various compartments of the head and a realistic brain mesh
associated with a brain atlas to anatomically localize the brain
regions. The head model also provides the conductivities of the
various head volumes through which the electric field propagates.
The realistic brain mesh enables one to anatomically constrain
the direction and orientation of the dipoles associated with each
cortical region or patchwhile the headmeshes allow one to specify
the various conduction volumes as well as the locations of the
sensors on the scalp that simulate the EEG electrodes.

In what follows, we use dipole source waveform activations
partially derived from the ERP empirical results, leaving open
the future use of detailed neural or schema network models (as
specified in Phase 1 of the full Synthetic ERP approach).

4.2. Head model

4.2.1. Conduction volumes
The implementation of Phase 2 of Synthetic ERP reported here

uses a 4-compartment head model based on the MNI Colin27 MRI
scans (Evans et al., 1993; Mazziotta, Toga, Evans, Fox, & Lancaster,
1995) which provides meshes representing the surfaces defined
by the gray matter, the inner skull, the outer skull, and the outer
surface of the scalp respectively. The reader unfamiliar with such
models can refer to Appendix C which offers additional details. In
addition, Appendix A provides the general physical formulation
of the forward problem. We want to note that we use a realistic
head model representing the anatomy of a specific individual.
The impact of the model’s specificity on conduction volumes is
often neglected (many forward solutions go as far as simplifying
the conduction volumes by concentric spheres). However, this
specificity becomes an issue when considering individual-specific
variations in cortical geometry (Mangin, Jouvent, & Cachia,
2010) as well as contrasts between, geometrically, functionally,
or cytoarchitectonically informed approaches to defining brain
regions (Fischl, Rajendran, Busa, Augustinack, & Hinds, 2008).
Idiosyncratic anatomical variations of language-related brain
regions should be considered as well (Amunts & Zilles, 2012;
Keller, Crow, Foundas, Amunts, & Roberts, 2009; Keller et al.,
2007). Such issues have long been recognized as important
to neurolinguistics in general (Whitaker & Selnes, 1976), and
take a central position here as the accuracy of ERP simulation
critically depends on accurate representations of cortical folds.
For this reason, in adjunction to the head model, we next discuss
cortical parcellation ontologies and atlases. We want to insist on
the need to quantitatively link EEG sources to standard brain
nomenclatures in order to bring issues related to cortical geometry
into computational modeling.

4.2.2. Brain areas
A brain area is a patch of cortex defined as a set of faces

taken from the realistic brain mesh. Such an area can be defined
as anything from a single mesh face to a whole brain region.
Currently, Synthetic ERP lets one define brain areas by selecting
an individual face or a set of contiguous faces using the Destrieux
(Destrieux, Fischl, Dale, & Halgren, 2010; Fischl, Van Der Kouwe,
Destrieux, Halgren, & Ségonne, 2004) anatomical atlases based
on its Brainstorm versions. Although other atlases exist (we
also implemented the Desikan–Killiany atlas (Desikan, Ségonne,
Fischl, Quinn, & Dickerson, 2006), we mainly use the Destrieux
nomenclature which defines regions based on gyral and sulcal
borders (while the Desikan–Killiany cortical atlas defines regions
based on gyri alone), giving us more flexibility. Selecting a region
triggers the selection of all the vertices and faces of the realistic
brain mesh that belong to this region (see Fig. 5). We incorporated
the possibility of selecting only the anterior, middle, or posterior
portions of an atlas based brain region. These informal subdivisions
heavily used in conceptual models are defined as covering a third
of the length of the area along its main axis as defined by PCA.

We apply our cortical brain atlas on the brainmodel of a specific
individual. This approach reflects the limitation that most ERP
data reported in the literature omit related data concerning the
cortical anatomy of those individuals participating in the study. In
additionmost ERP components reported are averaged over a given
population, begging the question of what is a good definition of
the cortex’s ‘‘average’’ geometry. In this paper we make explicit
our choice of using a standard individual brain in order to insist
that any discussion on ERP forward modeling must address issues
related to cortical surface templates, variation in cortical geometry,
surface averaging, and parcellation ontologies. For a review of the
state of the art and challenges related to these questions, we refer
the reader to Evans, Janke, Collins, and Baillet (2012).

4.2.3. Dipoles
Current equivalent dipoles are used to model the electromag-

netic field sources associated with a given brain area. In the
simulations reported below we consider mainly excitatory synap-
tic inputs (positive amplitudes for dipoles oriented inward).
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Fig. 5. (Left) Left pars triangularis (Desikan–Killiany atlas) brain area defined on the realistic brain mesh. Brain areas can be defined as individual faces or as brain regions.
The Destrieux or Desikan–Killiany anatomical atlases can be used to select a collection of faces associated with a brain region or other cortical area. The current model uses
the Brainstorm default version of these atlases. Each brain region is directly defined as a list of associated vertices on theMNI Colin27 brainmesh. (Right) Close up view of the
brain area. The orientation of source dipoles is defined by the unit vector normal to the face and pointing inward. Here we show the normals to three arbitrary faces of the
left pars triangularis (though for ease of representation, the normals are here oriented outward). The orientation of a source dipole within a given brain is highly dependent
on its position.
Appendix B offers more details concerning the modeling of neural
activity using current equivalent dipoles.

A key assumption of Synthetic ERP is that dipoles are con-
strained both in position and in orientation by the cortical geom-
etry of the active source, thereby ensuring that all dipoles have a
physical meaning (see Table 1). Appendix B details some of the hy-
potheses intrinsic to the dipole model regarding the curvature and
size of the patch of cortex modeled. Synthetic ERP offers the op-
tion of summarizing a brain area by either a single dipole or as a
distribution of dipoles associated with the faces of themesh linked
to the brain area. When a single dipole is used, its orientation is
defined as the mean of the normal vectors associated with each of
the faces contained in the brain area. The magnitude of the dipole
at time t is given both by the surface SA of the associated brain area
and its time course function dA(t). SA simply plays a role of multi-
plicative factor on dA(t) to ensure that the magnitude of a dipole is
proportional to surface of brain tissue it represents. It is given by
the sum of magnitudes of the normal to the faces contained in the
brain area. The function dA(t) for a given dipole will link, in future
work, to the activity levels in computational modules associated
with the brain area this dipole covers (Synthetic ERP phase 1). In
the present work, a more limited processing model is used to gen-
erate the time course activation function for each dipole.

4.3. Forward model and lead field computation

Synthetic ERP uses a standard method to compute the forward
model using the FieldTrip (Oostenveld, Fries, Maris, & Schoffe-
len, 2011) MatLab implementation of OpenMEEG (Gramfort, Pa-
padopoulo, Olivi, & Clerc, 2011). We refer the reader to Appendix E
in which we offer an overview of the Boundary Element Method
(BEM), the numerical method used here to solve the equations
defining the electric field (detailed in Appendix A). Our key inter-
est is to compute the lead field — the field observed at each sensor
position. A computationally important characteristic of this field
is that it can be expressed as the product of a gain matrix that
only depends on the dipoles’ positions and orientations with the
vector representing the dipoles’ amplitude (see Appendix D for
an overview of this algebraic formulation). This implies that for a
given set of anatomically constrained dipoles, expansive computa-
tion of the gain matrix needs only to be performed once. The EEG
signal generated by a given time course of brain activity, modeled
as variations in dipole amplitudes, can be then simply computed
through one matrix multiplication.

4.4. Processing model

4.4.1. Defining dipole amplitude from a conceptual model
We now turn to the processingmodel whose role is to associate

to each dipole a source waveform based on a conceptual model. As
noted earlier the long term aim of Synthetic ERP Phase 1 is to infer
these waveforms from an underlying neural or schema network
model, but here we focus on an alternative problem: Given a
conceptual model, formalize a set of quantitative hypotheses on
the patterns of temporal activationwithin the brain and ultimately
on the patterns of temporal activation of a set of dipoles. This then
provides the input to forward modeling whose results may clarify
places where the conceptual model is underspecified and thus
specify more precise targets for Phase 1 building of computational
network models.

We now focus on the five modules and four processing phases
extracted from the 2002 model and shown in Fig. 3. It may be
best to think of the graph of Fig. 3 as anatomical — showing
pathways feeding information from one module to another — but
in the case of a feedforward model like the 2002 model one could
also interpret this as a graph of temporal precedence. However,
this latter interpretation would not be applicable in models that
include loops and top–down processing. The crucial point is to
breakdowneachmodule into brain areas or even finer subdivisions
of cortex and to specify the time course dA of dipole activity for
each area so defined. At this level, it becomes irrelevant whether
an area A so specified occurs in one module or many, and whether
it is active once or many times during the overall task.

4.4.2. Activity modeling
Most conceptual models based on ERP results directly associate

the activation time of a brain module by appealing (perhaps
implicitly) to the boxcar representation critiqued in our discussion
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of Fig. 4. In order to show the strengths and limitations of such
an assumption, we choose in the present model to directly link
the dA functions (dipole amplitude waveforms), for the brain
area A associated with a given brain module, to the shape of
its component within the associated ERP. However, the shape
of an ERP component is not always readily accessible from the
EEG literature which tends to emphasize the time of occurrence,
duration, and size of the component — and these values can be
reported in a variety of ways, but there is no consensus (Luck,
2005). Moreover, our concern here is to lay the foundations for
linking ERP data to detailed models of underlying processing. As
we have stressed elsewhere (Arbib et al., 2000), the fact that area
A is ‘‘significantly more active’’ in task X than area B does not
mean that there is no activity in area B during task X. A processing
model will provide an account of the time course of detailed
neural or schema activity in both areas A and B during the task,
however ERP results are usually presented without assessing the
presence of possible overlaps between components. This makes
the quantitative extraction of the shape of a component difficult.

To clarify the issues here, we suggest a means to extract the
N100 component generated during an auditory oddball detection
task from the empirical measurement reported by Scherg et al.
(1989) from an overall ERP waveform. The challenge is to hypoth-
esize what part of the empirical data given by the solid curve in
Fig. 6 is actually the N100 component, and what parts of the wave-
formare extraneous to thismodule.We took the originalwaveform
and defined the duration time D of the N100 component as the full
width at half the extremum of the peak at 100 ms, spanning the
interval [T1, T1 + D]. We then modeled the shape of the peak by
finding the gamma function γ defined on [0, 1] and normalized in
amplitude such that γ ((t−T1)/D) results in the best fit for that du-
ration (parameters for γ are k = 4 and theta = 0.1). From there, dA
associatedwith the N100 brainmodule is defined as γ ((t−T1)/D)
for t in [T1, T1+D]. Once we have defined the N100 component in
this way, the difference between the posited N100 and the actual
ERP activity in Fig. 8 is then hypothesized to correspond to neu-
ral activity in other brain regions. We do not claim that a gamma
function is the only option for the fitting of an ERP. It has the prop-
erty of being defined on the positive real line with γ (0) = 0 for a
certain range of parameters. This fits with the assumption that the
activity of a brain area has an onset time before which its activity
is null. However a polynomial fit would of course also be possible
but would leave the number of parameters unconstrained.

To generalize this example, recall that a brain module M is
based on the hypothesis that certain brain areas are implicated in a
specific function F. In a feedforward model, we may assume that a
given area A is active only once and only in onemodule. In general,
though, an area A may be involved in multiple modules. However,
we here consider how to extract an estimate for dA(t) for the time
period associated with the peak (P or N) of a strong deviation in
the ERP associated with an anomaly in the execution of function F.
Noting thatmostmodules in Fig. 3 are each associatedwith several
brain areas, we make (for now) the simplifying assumption that
the same amplitude waveform is associated with each area linked
to the given module. Given this, we start with an ERP waveform
that has a significant peak posited to correspond to a particular
ERP component. Then, just as before, we extract a duration from
the peak, and then find the gamma function that best fits the peak
during that duration. The resultant curve is our formally defined
dA(t) for that interval for all areas A associatedwith themodule for
that component. Unfortunately, such curve fitting is inapplicable
when the necessary details of the ERP waveform are not reported
in the experimental literature.

Given our discussion of the N400 in Fig. 1, note that we are
looking (at least) for the dA(t) for a given area of a given module
in two different conditions, with and without the anomaly.
As noted at the beginning of this section, we do not claim that
the modeling choices we made in order to extract dA were the
only ones possible. Our goal was to give a quantitative form to
the assumptions underlying the interpretation of ERP components,
often implicit in the neurolinguistic literature. The two main
assumptions can be summarized in the following statements:

(1) An ERP component has a given qualitative shape. This shape
is roughly the same for classes of components such as N100,
N400, and P600.

(2) The shape of the ERP component is isomorphic to the activity
of its underlying brain regions.

We formalize (1) quantitatively by choosing to model each ERP
components with a gamma function (best fitted to each compo-
nent). The direct association between such gamma functions and
dA formalizes (2).

We insist on the fact that such a phenomenological fit of the
ERP data is not an intrinsic feature of Synthetic ERP but stems
from a desire to formalize what we consider to be the way most
neurolinguistic models interpret such empirical results. In doing
so we seek a better understanding of how to link computational
models to conceptual ones as well as identify the stumbling blocks
that qualitative data formatsmight create for modelers (for amore
general discussion of these issues and of the challenges posed to
neuroinformatics by neurolinguistics see Arbib, Fagg, and Grafton
(2003); Lee and Barrès (in press)). The goal of future work on
Synthetic ERP Phase 1 is to simulated ERPs by applying the forward
model to a realistic processing model of the interactions between
neural components adequate to produce the observed language
behavior.

5. Simulation results

We now present simulation results for a forward model
computation of ERPs based on the 2002 model of language
comprehension. We first detail the information extracted from
the 2002 model (using the methods of the previous section) that
served as the basis for the forward model. We then qualitatively
compare the simulated scalp potential topographies generated by
the forward model against empirical data (Simulation results 1:
Scalp potential topographic maps). This enables us to highlight
some initial issues related to source dipole localization. We finally
move on to simulating ERPs based on the 2002 model (Simulation
results 2: Synthetic ERPs) and compare our results with the ERP
experimental data reported by Hahne and Friederici (2002) in
Fig. 4.

5.1. Mapping the 2002 model onto cortical geometry

As in Fig. 3, the 2002 model defines five brain modules asso-
ciated with the different phases of sentence comprehension each
considered to be the source of a specific ERP component. The
brain regions associated with these brain modules are referred
to using a mixed ontology of gyrus/sulcus neuroanatomical land-
marks along with cytoarchitectonically defined Brodmann areas
and functionally defined sensory areas. We mapped these regions
onto the Destrieux atlas that offers a cortical surface parcellation
based on cortical geometry. We based the conversion on the de-
scription of the Destrieux atlas given by Fischl et al. (2004). The
result of this conversion is presented in Table 2. Brodmann on-
tology is frequently used in neurolinguistics. However, given the
sensitivity of the EEG sources to the graymatter gyral geometry, id-
iosynchratic variations in the gyral localization of Brodmann areas
are a limitation to their usefulness in Synthetic ERP (see Amunts,
Lenzen, Friederici, Schleicher, andMorosan (2010) for a discussion
of these issues, focusing on Broca’s area).
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Fig. 6. dA shape definition from the different ERPs. In each case, the solid black line represents the experimental ERP waveform while the semi-dotted line represents the
best-fit result to the stated ERP component. Since N100 and LAN are not analyzed in their study, N100 is defined based on Scherg et al. (1989) and LAN based on Penke et al.
(1997). Note that LAN presents a specific case where the component is a negative going deflection on a positive baseline value. CondSem refers to the semantic violation
condition while CondSyn refers to the syntactic violation conditions. For the brain module source of any given ERP, the shape of dA is defined as the best fitting gamma
function associated with the peak for the stated component. For the actual dA see Fig. 9.
Source: Data for ELAN, N400, and P600 are taken from Hahne and Friederici (2002).
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Table 2
Conversion of the mixed brain ontology of the 2002 model into a single anatomical atlas, the Destrieux brain surface atlas.

Destrieux atlas Friederici’s model
Hemisphere Name Cortical regions Modules

Left & right Anterior transverse temporal gyrus (of Heschl) Primary auditory cortex N100
Left & right Planum temporale or temporal plane of the superior temporal gyrus Planum temporale N100
Left Lateral aspect of the superior temporal gyrus [Anterior segment] Left anterior STG ELAN
Left Opercular part of the inferior frontal gyrus Left frontal operculum ELAN
Left Triangular part of the inferior frontal gyrus Left frontal operculum ELAN
Left Opercular part of the inferior frontal gyrus BA 44 LAN
Left Triangular part of the inferior frontal gyrus BA 45 N400
Left Orbital part of the inferior frontal gyrus BA 47 N400
Left Lateral aspect of the superior temporal gyrus [Middle segment] Left middle STG N400
Left Lateral aspect of the superior temporal gyrus [Posterior segment] Left posterior STG N400, LAN, P600
Left Middle temporal gyrus (T2) [Middle segment] Left middle MTG N400
Left Middle temporal gyrus (T2) [Posterior segment] Left posterior MTG N400
Left Superior temporal sulcus (parallel sulcus) [Posterior segment] Left posterior STS P600
Fig. 7. Faces of the realistic brain mesh associated with the 2002 model in the head model for dipole localization. All the areas are defined using the Destrieux anatomical
atlas. (1) & (2) N100module. The bilateral Heschel’s gyrus is not visible here. (3) ELANmodule. (4) LANmodule. (5) N400module. (6) P600module. (For the precise anatomical
regions and their comparison with the 2002 model see Table 2).
Fig. 7 presents the faces of the realistic brain mesh associated
with the different brain modules in the headmodel. Our definition
of the LAN module is more extensive than in Fig. 3, because
the 2002 model does not make precise what parts of the frontal
operculum need to be included. We were able to include the
anterior, middle, or posterior parts of the superior and middle
temporal gyri as required by the 2002 model, but such regions do
not have a standard definition and are therefore are not part of the
Destrieux atlas. Finally, it is important to note that the 2002model
includes the basal ganglia in the P600 brain module but we do not
include any subcortical structures in our current head model.

Single average dipoles were associated with each brain area
which was part of at least one brain module. When simulating
scalp potential topographies, the lead field was computed at every
vertex of the top part of the outer scalp mesh. Otherwise, the
Brainstorm 10/10 65 channels default electrode positions were
used as computation points for the lead field. Conductivities were
kept at the values defined by Oostendorp, Delbeke, and Stegeman
(2000).
5.2. Processing model: Brain modules and activity timing

We use the connectivity defined in the graph of Fig. 3. Due to
the serial nature of the 2002 model, the connectivity is interpreted
as a graph of temporal precedence. For each brain module A, the
activation times T1(A) (‘‘on Time’’) and T2(A) (‘‘off Time’’) are
defined as follow. T2(A) is systematically defined as T1(A) +

D(A) were D(A) is the full width at half extremum of the ERP
component associated with A. For the input module, N100 module
representing the auditory sensory areas, the T1 was set to 20 ms
as the time required for the auditory input to activate these
brain areas (Rupp, Uppenkamp, Gutschalk, Beucker, & Patterson,
2002). For the other modules, the T1 was defined as the ‘‘off
time’’ of the preceding module to which 20 ms were added to
account for transfer delays. Other delays such as those inherent
to the dynamics of neural computation (in particular post-synaptic
potential buildup delays) are thought of as already lumped into the
definition of dA. Phase 1 will assess the requirements these impose
on neural and schema networks. In the case of multiple inputs
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Fig. 8. Activation durations for each brain module for ERP component sources in the various experimental conditions. The durations of activity for each module were
extracted from experimental data as the width of the respective component at half maximum. (LAN boxcar is shown higher so as not to be obscured by N400.)
(see P600 module), we made the assumption that both preceding
processes needed to be done before the next process could
start.

Activation times are given for each module and for each exper-
imental condition in Fig. 8. In the semantic condition, only the ac-
tivity of the N400 module changes duration from the normal con-
dition following the reported effect of such violation on the N400
ERP. In the syntactic violation condition, both ELAN and P600mod-
ules, activation times are affected since this violation triggers a
change in the ELAN and P600 components (according to Hahne &
Friederici, 2002). Fig. 9 presents the dA associated with each brain
module. They are given by the gamma functions extracted from the
empirical ERP data as detailed in Section 4.4. However, to follow
more closely the hypotheses made by the 2002 model, the onset
of activity is now determined by the onset times we just discussed
and not by the onset of the ERPs to reflect the serial computation
hypothesis.

We do not claim to have the capacity to extract the exact timing
of activations or activity level of brain modules from ERP but for
now follow the general assumption that the ERP duration reflects
the duration of the associated brain processes while the ERP
amplitude reflects their activity levels. These claims are pervasive
in neurolinguistics and the role of the present work is to show
both their strength but also their limitations in the framework of
Synthetic ERP. Once again, future work on Synthetic ERP Phase 1
will relax such assumptions since the timing of activations and
activity levels of brain areas should then directly result from
activity patterns of the neural or schema model.

5.3. Simulation results 1: Scalp potential topographic maps

For each ERP component, we now compare the scalp potential
topography generated by simulation of the baseline level activa-
tion of its associated brain modules with an empirical measure-
ment of the scalp potential topography. Each brain area composing
a module is represented by a single dipole averaging its curva-
ture and proportional in magnitude to the surface of the area.
Appendix B makes explicit the fact that such an averaging would
be an acceptable approximation of a brain region in a general case
under the hypotheses that this region is small and that its curva-
ture is negligible. The assumption we make here aims therefore at
illustrating the problem often ignored by conceptual models that
EEG sources need to be considered in their spatial extension –with
the exception of very focal activities as in the case of an epileptic
focus.2 ERP components show variability in their associated scalp
distributions just as they show variability in their shape, timing,
and magnitude. However, this initial comparison enables us to get
a first estimation of the validity of the simulations at the stage
where the only assumption results from what could be extracted
from the conceptual model concerning the neural substrates asso-
ciated with each brain module.

As shown in Fig. 10, the simulated topographies did not
qualitatively match the empirical ones for all the brainmodules. In
the case of the N100 module and the LAN module, the results are
close to the empirical measurements with the following caveats.
The N100 is more right lateralized. The maximum negativity is
achieved for the electrode C6 as opposed to Cz for the empirical
result. This asymmetry in our simulation could be due to the
anatomical asymmetry of the bilateral brain areas defined as the
sources of the N100 (see Fig. 7(1) and (2)). The topography for
the simulated LAN is roughly correct with a negativity slightly
posterior of the empirical one (minimum for electrode T7/T3 for
the simulation comparedwith F7 for the empirical data). For ELAN,
N400, and P600 the simulated topographies are blatantly incorrect.
However, we could find for these a face in the anatomical region
attributed to each brain module whose associated dipole yields a
greatly improved potential topography. For ELAN the result ismore
left lateralized than in the empirical measurements. The same is
true of the N400 simulated topography whose asymmetry differs
from the overall symmetry of the empirical one. As for P600, once
again the simulated distribution is shifted to the left side of the
head compared to the empirical data. This general tendency to be
left lateralized could reflect the absence of consideration of the
role of the right hemisphere in language processing in the 2002
model. The N400 is the most obvious case and it has been reported
that the right hemisphere plays an important role as a source of
this component (Maess, Herrmann, Hahne, Nakamura, & Friederici,
2006).

This shows the importance of the careful consideration of the
geometry of the cortical areas whose activity generates an ERP.
A coarse anatomical definition of the brain areas associated with

2 From a historical point of view, identifying an epileptic focus has been one
of the driving forces behind the development of EEG source localization methods.
This could partially explain why so much of the literature circles around modeling
brain activity through the use of one or a few dipoles. This fits the hypothesis that
only a few localized patches of cortex are generating the EEG signal during an
epileptic seizure. However, it is clear that in the more general case — as in language
processing — the number of cortical regions as well as their size would require to
revise such view.
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Fig. 9. dA associated with each brain module for the three experimental conditions. In the semantic violation case, the dA for the N400 module changes in duration and
activation level. This triggers a change in onset time of the P600 due to the serial processing hypothesis. In the syntactic violation condition, the dA for the ELAN changes
in duration and activation level compared to control as well as P600. The change in ELAN duration impacts all the activations times downstream. (Note that the activation
scale differs between the top and the bottom graph). Dotted arrows identify, when needed, dA function associated with a same module.
a processing module in a conceptual model does not provide in
most cases enough information to simulate an ERP-associated
scalp potential topography. Although averaging the curvature of
an area can give reasonable results, in most cases it is necessary
to search for the correct cortical patch within an area whose
curvature and position result in a field that fits the ERP empirical
topography. It is important to note however that such a search
differs from most of the inverse solution models that look for best
fitting dipole localization and orientation without any anatomical
constraints. Although insufficient, the brain modules defined in
the 2002 model, once associated with a realistic mesh modeling
the gray matters folds, considerably constrain the search space to
a finite set of dipoles. A yet even more realistic approach would
be to model brain regions by a distribution of dipoles over its
surface rather than by a single dipole (in the spirit of Bojak et al. as
described in 1.3). However, it will be the role of Phase 1 to analyze
how to link a neural network representation of the distributed
computation occurring in a brain region to a geometrically accurate
model of cortical activity.

5.4. Simulation results 2: Synthetic ERPs

Given the preceding results, we modified the head model in
the following way. For the N100 and LAN brain modules we kept
their associated dipoles defined as average area dipoles. For the
ELAN, N400, and P600 brain modules for which the average area
dipoles gave incorrect scalp potential topographies, we kept the
better fitting single dipoles described above. In order to keep
the contribution of the areas comparable, the dipoles for all the
areas (including the ones associated with the N100 and LAN brain
modules) were given an equal magnitude. This is tantamount to
saying that we remove the area surface factor and consider all the
dipoles to summarize a patch of cortex of equal surface. In the
case of the single average dipoles, that means that we kept the
location and orientation but that the dipole is not thought tomodel
the activity of the whole area but some distributed portion of this
whole area.

We compare the empirical data extracted from Hahne and
Friederici (2002) and our simulated ERP. For simplicity, we only
consider here the empirical ERP time course as recorded at the
most significant electrode (Cz for N400, F7 for ELAN, and Pz
for P600). In the absence of noise in our system, we simply
define our ‘‘most significant electrodes’’ as the ones where the
maximum peak amplitudes for a given component are observed
(TP7 for N400, F3 for ELAN, and PO3 for P600). Fig. 11 provides a
visual representation of the differences of localization in the most
significant electrodes between the empirical and simulated data.
ELAN and P600 appears to be roughly maximal in the same scalp
quadrant as for the empirical data (anterior left for ELAN, posterior
left for P600). N400 maximum amplitude on the other hand is
highly left lateralized in the simulated case when it is central in
the empirical data. Asmentioned in Simulation results 1, this could
tie back to the assumption of purely left lateralized sources for
N400. Future work should try and compare this result with those
resulting from the inclusion of right lateralized brain areas as N400
sources as suggested by Maess et al. (2006).

From these comparisons, it seems that the level of precision
one could expect from Synthetic ERP simulations should clearly
be lower than the level of granularity of scalp regions provided
by the 10/10 65 electrodes cap positions. In linking empirical
reports of ERP to computational simulations, an average value
over a few electrodes covering a standard brain region might be
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Fig. 10. Scalp potential topographies. Comparison of empirical data and simulated fields: Each row represents the data and simulation result for the ERP effect listed in
the leftmost column. The second column from the left depicts the topographies of the potentials associated with the ERP as extracted from the literature (Bäß et al., 2008;
Hahne & Friederici, 1999; Kutas & Federmeier, 2011; Penke et al., 1997). Rather than displaying waveforms as in Fig. 3, we display scalp potential topographies as smoothed
‘‘heat maps’’ for the moment at which a given potential reaches its peak. In the absence of a standard way to report these topographies, we did not try to find matching
representations and the patterns should be taken as qualitative depictions. The two columns on the right present simulated scalp topographies based on the activation of the
brainmodule associatedwith the ERP by the 2002model (lower potential values in blue, higher in red). The ‘‘Average dipole/area’’ columnpresent the simulated topographies
based on single average dipole for each area. If the N100 and LAN components coarsely match the empirical data, ELAN, N400, and P600 topographies are incorrect. In
the rightmost column, for these incorrect cases, we found a single dipole associated with a face belonging to a brain module whose resulting simulated topography fits
qualitatively better with the empirical topography. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Comparison of the empirically most significant electrode position for
Hahne and Friederici (2002) (blue) and Synthetic ERP (green). For the empirical
results, the most significant electrodes for the measurements of ERP are: F7 for
ELAN, CZ for N400, and Pz for P600. In the case of Synthetic ERP they are F3 for
ELAN, TP7 for N400, and PO3 for P600. If the simulated most significant electrodes
for ELAN and P600 are roughly similar to their empirical counterparts, the case of
N400 shows a clear left lateralization in the simulation absent from the empirical
data (see discussion in Simulation results 1: Scalp potential topographicmaps). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

more appropriate. This states the challenge both for Synthetic
ERP phase 1 with a need to assess more precisely what the scalp
localization precision could be. But it also should highlight the role
computational Synthetic Brain Imaging endeavors could play in
assessing what appropriate levels of representation of empirical
results to provide suitable quantitative summaries for modelers.

Fig. 12 presents the comparison of the empirical ERP time
course and the simulated ones based on our forward model. In
both the empirical and Synthetic ERP case, the solid line represents
the control time course while the dotted line represents the time
course in the experimental conditionmentioned on the right of the
figure. Once again we did not aim at simulating the exact potential
values but the relative variations between the baseline and the
experimental conditions. These simulations raise the following
issues.

Looking at the P600 simulation, the first clearly apparent result
is that, if we replicate the late positivity, the temporal relation of
the P600 component in the baseline and in the syntactic violation
condition differs between the empirical and simulated results.
Such a difference results from the fact that we did not directly
choose the onset time of our brain module’s activations based on
the ERP but derived them from the serial processing hypothesis
made by the 2002 model. As shown in Fig. 8, the onset time
for the activation of the brain module hypothesized to generate
the P600, given the hypothesis of serial processing, does not
markedly differ between the baseline and the syntactic violation
condition (interestingly such a difference in onset is clear however
in the semantic violation condition). The only minor difference in
activation times is due to the increase by 50 ms of the duration of
the ELAN downstream which delays all the following processes.

Turning to the ELAN component, the simulation shows a large
negative deflection peaking in a time window [100–300 ms]
similar to the one presented in the empirical data. However,
the general trend of negative going deflection displayed by the
empirical time course in both baseline and syntactic violation
conditions is not replicated. This points towards the limitations
of our approach but also of the empirical reports of ERP results
which tend to ignore some features of the measured signal that
would however provide interesting benchmark cases for testing a
modeling effort.

Finally, for the N400 the model does replicate the increase in
duration and magnitude of the N400 component when contrast-
ing the semantic violation condition to the baseline. If we abstract
the large initial positive peakwith results from the early activation
of the N100 brain module, the shape of the empirical N400 is rel-
atively well replicated, including the initial absence of noticeable
difference between the anomalous and baseline conditions until
500 ms when a clear negative going deflection can be observed in
the semantic violation condition.

6. From preliminary results to emerging challenges

By providing a first attempt to directly simulate ERP compo-
nents by linking a neurolinguistic conceptual model to a forward
model, wewere able tomake explicit some of the challenges raised
by the attempt to link ERPs to the underlying dynamics of neural
circuitry. These challenges are methodological, technical and com-
putational, but they also reside in part in the way in which data are
documented in the empirical literature. For example, in discussing
Fig. 4, we emphasized the difference between, for example, assess-
ing the timing of a dramatic increase in negativity in response to a
semantic anomaly and seeking to understand the underlying pro-
cessing of the meaning of a word which determines whether or
not it is anomalous with respect to the fragment of a sentence that
precedes it. Accordingly, Synthetic ERP should be understood as
an essential tool for future efforts to link experimentally observed
phenomena to detailed cognitive processing models, as well as an
attempt to define what quantitative aspects of those phenomena
will allow experimentalist andmodelers to collaboratemore effec-
tively. The latter issue was highlighted by our distinction between
the descriptive time course of activations provided by the 2002
model, and the generative time course we sought to articulate us-
ing the dA functions. By simulating the dipolar contribution of dif-
ferent cortical regions on the basis of observed scalp topographies
wewere able to underscore the necessity for geometric definitions
of cortical structures when seeking to link functional anatomy to
neuroelectromagnetic phenomena.

As we discuss in more detail in Section 7, Phase 1 of Synthetic
ERP will develop the necessary quantitative tools to extract dA ac-
tivation patterns from computer simulation of a neural or schema
network model of the underlying language processing. Unfortu-
nately, current networkmodels of this kind are not structuredwith
respect to hypotheses on the anatomical localization and orienta-
tion of different subnetworks in the three-dimensional head.

The present paper focused more on Phase 2 of Synthetic ERP,
namely the development of a forward model capable of gener-
ating scalp-recorded EEG signals when provided with activities
in defined regions of cortical anatomy. To initiate our analysis,
we used a standard head model composed of four volume con-
ductors. Field sources were modeled as source equivalent dipoles,
sensor positions were given default values, and the forward com-
putation of the field relied on existing boundary element method
implementations. Rather than assess the effect of the various
elements of the head model on the quality of the field’s com-
putation (Hallez, Vanrumste, Grech, Muscat, & Clercq, 2007;
Wendel, Väisänen,Malmivuo, Gencer, & Vanrumste, 2009), we em-
phasized the impact of cortical geometry on source dipole mod-
eling. Whereas inverse approaches to source localization from
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Fig. 12. Comparison of ERP time course as extracted from empirical data (Hahne & Friederici, 2002) and simulated using our forward model. In each plot, the solid line
represents the ERP time course for the baseline condition while the dotted line represents the ERP time course for the experimental condition. The leftmost column gives
the experimental condition associated with the row as well as the ERP component associated with such condition. For the empirical data, we selected the recordings at the
most significant electrodes. For Synthetic ERP, the ‘‘most significant electrodes’’ are defined as the ones where the maximum peak amplitudes for a given component are
simulated.
scalp measurements are ill-posed, the forward approach requires
a model that makes precise what brain areas generate the compo-
nent. As we shall now discuss, the participation of such areas can
be segregated into two contributions: the source dipole orientation
constrained by the gray matter surface and the pattern of activa-
tion.

6.1. Source dipole modeling and cortical geometry

We associated the cortical regions defined in the 2002 model
to source dipoles by first mapping them onto our realistic
brain mesh, and then averaging the normals to the surfaces of
these areas to generate a representative dipole orientation. An
important challenge concerned the 2002 model’s use of multiple
ontologies to define neural substrates of cognitive processes
and ERP components. Functional regions were used alongside
cytoarchitectonically defined Brodmann areas and coarse gyral
ontologies. Since the critical factor for modeling the source of the
electromagnetic field is the geometry of the gray matter surface,
functional regions or Brodmann areas need to be converted to
their associated gray matter surface location since only then can
the orientation of the area’s surface be retrieved. Moreover, the
orientation may vary across a region, indicating the challenge of
linking functioning neural circuitry to subregions or even voxels
within a given region. We used the Destrieux atlas as a unified
ontology providing the correct amount of detail to recast themixed
ontology of the 2002model into a single brain atlas — an approach
which highlights the lack of unified standards for delineating brain
regions (and subregions).

As has been discussed previously in Section 1.3, the ill-posed
nature of the electromagnetic inverse problem means that no
unique source model can be obtained without the use of fallible
a priori constraints. Accordingly, this approach can only provide
a general localization of neural activity, such as the 2002 model’s
claim that a contributing source for the N400 resides in BA 45. As
shown by Synthetic ERP simulations in Fig. 10, such limitations
do not allow for faithful simulation of the canonical N400 scalp
distribution (among others). Two solutions can palliate these
limitations. The first one consists in finding within these areas the
cortical patch providing the best fitting solution. If in the present
paper we simply hand picked a better fitting dipole, future work
could investigate the possibility of using the apparatus involved
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in computing the inverse solution while constraining the search
space to the source dipoles (or combination of source dipoles)
associatedwith a given brain are. An example of a related approach
to EEG source reconstruction including anatomical constraints on
their solution space is given by Phillips et al. (2002). Another
option would be to make direct use of the coordinates where fMRI
revealed a significant increase of BOLD signal and posit this as
the location of the relevant dipole. However, we have stressed
that detailed processing models will in general show that a given
epoch of processing for a given language subfunction involve
the competition and cooperation multiple neural circuits beyond
those restricted to areas of most significant BOLD activity — and
this observation motivates our work on both Synthetic fMRI and
Synthetic ERP, with the long-term goal of developing ‘‘doubly
causal’’ models (more in Section 7) that can predict both fMRI and
ERP signals under varied task conditions.

6.2. Activation modeling

We provided a way to use ERP data as a basis for modeling
the time course of activations in brain areas that goes beyond
a simple modeling of activation as a boxcar function defined on
a period directly mapped in onset and offset time of an ERP
component defined by some formof anomalous input. Our attempt
to simulate the ELAN, N400, and P600 ERP components reported
by Hahne and Friederici (2002) provided new insights into the
challenges of relating neurolinguistic data andmodels to empirical
ERP data through synthetic brain imaging. Nonetheless, this does
not obviate the need for detailed processingmodels (Synthetic ERP
Phase 1; see Section 7).

6.3. Quantitative ERP data extraction from literature

We have laid bare the difficulty of extracting quantitative ERP
data from the literature in a format suitable for Synthetic ERP
computational modeling. The appropriate data format needs to in-
clude the shape of the component or EEG trace measured under a
variety of experimental conditions. Our ELAN simulation showed
not only that a computational model should replicate the nega-
tive going component at around 100 ms but also the negative-
going trend all through the epoch time. The commonmethodology
of describing a component at the locus of electrodes as opposed
to their average over larger scalp region also poses problem, as
the electrode level precision seems too small a scale for Synthetic
ERP. It also poses problems for the definition of ERP components
themselves since a ‘‘most significant’’ electrode location cannot be
empirically assigned to a component across subjects and experi-
mental designs. Finally, the N400 simulation highlights the diffi-
culty of clearly defining an ERP componentwhen its particular field
contribution is superimposed upon those from other concurrent
processes, or when the component is known to have several func-
tionally and scalp-voltage topographically distinct subcomponents
as in the case of N100 or N400. We anticipate such superimposi-
tion of fields and diversity of subcomponents to be the norm for
any sufficiently detailed description of neuroelectromagnetic dy-
namics associated with cognitive processing, and therefore recog-
nize that qualitative accounts of ERP data are the limiting factor for
anymodeling or comparative exercise. In particular, we stress that
many different neural processes may underlie a negativity occur-
ring in a range around 400 ms, and so we may expect progress in
neurolinguistics to depend strongly on the ability to discriminate
different ‘‘N400s’’ rather than speaking of ‘‘the’’ N400.

7. A prospectus for Phase 1: From neural and schema networks
to dipoles

Our long-term goal is to generate models with hypothesized
circuitry localized to specific brain regions but competing and
cooperating to yield overall behavior, making explicit how prior
processing creates states that affect computing in the current
epoch. The task is immensely simplified if it can be argued that
the human circuitry for the function is a variation on circuitry in
the monkey brain for which neurophysiological data are available.
This was the case in studies of reach to grasp behavior (Arbib et al.,
2003; Grafton, Fagg, & Arbib, 1998) and basic forms of working
memory and auditory object processing (Deco, Rolls, & Horwitz,
2004; Husain et al., 2004; Tagamets & Horwitz, 1998, 2000).
In these cases, Synthetic Brain Imaging was applied to predict
synaptic activity in circuitry localized in different brain regions
as the basis for computing predictions testable by PET or fMRI
imaging. But what of ERP data? As indicated above, the strategy
is to use computational models to predict the time course dA(t) of
current equivalent dipoles for relevant areas of the brain, and then
use forward modeling to derive predictions of ERP measurements.
Unlike previous work on Synthetic Brain Imaging, model neurons
must now be linked to cortical geometry so that dipole orientation
can be defined in an anatomically sound fashion. We will show
that neural network models of language processing seldom link
circuits to brain regions, and then introduce our recent work
employing interacting schemas to model language production and
comprehension, while noting that it too has yet to be strongly
linked to neurobiological data.

7.1. Testing a neural network model against ERP data using a forward
approach: Modeling requirements

The goal of computational neurolinguistics is to build models
that not only simulate a linguistic task or behavior (such as
decomposing the sound wave of a word into phonemes, assigning
the proper syntactic structure to a sequence suchwords, describing
a visual scene, etc.), but also replicates underlying brain processes.
Our discussion of the forward model part of Synthetic ERP (Phase
2) showed that ERPs imposes important requirements on neural
network modeling. Table 3 offers a preliminary presentation of
these requirements for various features of neural network models.
Such requirements will be at the heart of the future work on Phase
1 of Synthetic ERP.

7.1.1. The minimal neuron model for combining Synthetic Brain
Imaging and Synthetic ERP

For Synthetic Brain Imaging, we require the time course of
synaptic activity for all neurons in each simulated brain region.
This can then be passed through the hemodynamic function
and averaged appropriately to yield predictions for PET or fMRI.
However, although the model may contain many neurons in both
cortical and non-cortical regions, the neurons most relevant to the
ERP signal are cortical pyramidal cells and themost relevant aspect
of their activity is the PSPs in their apical dendrites. Moreover,
the contribution of these dendrites to the dipoles integrated into
dA(t) for a specified region A depend crucially on their orientation.
Thus,whereas themodeling of neurons for Synthetic Brain Imaging
can ignore the spatial location of its constituent neurons, modeling
of the cortical pyramidal cells for Synthetic ERP must represent
not only the location but also the orientation of the neurons. We
stress that in general the model will include other cell types from
cerebral cortex as well as circuitry in subcortical regions — but
the activity of these cells is not included in Phase 2 of Synthetic
ERP. In our discussion of forward modeling, we introduced a head
model which represents the surface of cerebral cortex by a mesh
(see 4.2, details in Appendix C). Hence, in a computational model
of cortical processing to be used with Synthetic ERP, the location
of all pyramidal cells must be specified either (a) as being below a
specific face of the mesh or (b) below some larger ‘‘slab’’ obtained
by aggregating a number of contiguous faces and assigning them
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Table 3
Preliminary requirements imposed on computational neural networks by constraints associated with the use of an EEG forward model. For each feature of a neural network
model outlined in the leftmost column, the central column stipulates the new constraints imposed on this feature by the use of the Synthetic ERP phase 2 forward model.
The rightmost column converts these constraints into requirements that the feature needs to meet in order to be used in Synthetic ERP. Although we have exemplified
Synthetic ERP with examples from computational neurolinguistics, this table offers guidelines of more general applicability. In particular, they should help orient neural
network modeling for both systems and cognitive neuroscience towards model types that facilitate contact with ERP data.

Model features Constraints Requirements

Neuron model - Current dipole’s amplitude is linked to synaptic activity - Allow the quantification of synaptic activity
- Neural activity should be simulated with a ms precision - Account for the impact of synaptic activity characteristic times on processing times

Neuron types Only the synaptic activity of pyramidal cells contributes
to EEG signal

For Phase 1, the model must include all cell types required to provide circuitry that
performs the stated tasks and can be tested against single-cell data (where
applicable). For the current version of Phase 2, anatomical localization and
orientation must be defined for the cortical pyramidal cells included in the model

Brain area
model

The cortical geometry is a key parameter of ERP
modeling

Map each neural layer representing a given brain region onto a 3D mesh model of the
cortical surface geometry using an existing surface atlas. Neurons in a layer should
carry hypotheses on their cell type and connectivity but also on their 3D location on
the cortical surface

Overall network
architecture

Signal conduction times between brain regions need to
be accounted for

- Incorporate into the large-scale connectivity between neural layers the known
white matter connectivity between the brain regions they represent
- Account for the action potential propagation delays in the white matter tracks
an averaged orientation. Each cell is then oriented orthogonally
to the face or slab to which it is assigned, and we must then
employ a neural model that yields the time course of PSPs of
the apical dendrites. Given the resulting spatial structure and the
fine temporal resolution required to compute the ERP, we need to
include axonal propagation time in the model, and for this reason
it would seem that spiking models would serve better than rate
models. The simulated PSPs of apical dendrites would provide the
3D distribution of dipoles, fixed in orientation but time-varying
in amplitude, to drive the forward model. The result would be
the Synthetic ERP for the phenomenon captured by the simulated
network.

7.1.2. Cortical geometry and surface atlases
Synthetic ERP is not alone in stressing the importance of cortical

geometry in defining the position and orientation of EEG sources
(see Table 1). However, our approach to the forward problem both
within the framework of neurolinguistics and as a tool to move
from conceptual to computational models lead us to reposition
this issue at the center of the forward problem. The analysis of
the current dipole model and of the head model (see 4.2 and
Appendix B), as well as the problems raised by the mapping of the
brain regions defined by the 2002model onto a single surface atlas
(see 5.1) show the issue of cortical geometry to be much richer
than that of merely constraining dipole orientation as normal to
the cortical surface.

In order to quantitatively account within a computational
framework for the impact of cortical folds on the EEG signals, we
suggest the following questions be addressed within models of
cerebral cortex:

(1) How to quantitatively constrain the electric sources orienta-
tion and position by the geometry of the cortical surface?

(2) What cortical surface should be used? Individual cortical sur-
faces or population-average templates?

(3) What surface atlas should be used to parcellate the cortical
surface and ensure a standard mapping between the brains of
various individuals?

Question (1) is commonly addressed in the forward modeling
literature through the use of 3D meshes representing the cortical
surface. A dipole can then be constrained in orientation by the
normal vector of a given face of the mesh. Its impact on neural
network modeling has been detailed in the preceding section (see
7.1.1).

Question (2) raises the issue of the type of cortical surface
used. The lack of inter-individual correspondence in cortical
foldingmakes any attempt to define population-average templates
difficult. The well-documented case of the duplication of Heschl’s
gyrus in some individual (two gyri instead of one) provides a good
example (Leonard, Puranik, Kuldau, & Lombardino, 1998). Heschl’s
gyrus is part of the primary auditory cortex which, according
to the 2002 model, performs acoustic analysis and phoneme
identification, linked to the N100 ERP component. How should
these variations in Heschl’s gyrus’ morphology be incorporated in
the framework of computational modeling? How do they impact
the forward modeling of N100? In part, the answer may well
depend on the precision with which the ERP data are presented.
If the data average over a number of subjects without separation
with respect to, at least, gross differences in gyrification, then it
may be appropriate to use the simpler anatomy as the basis for
Synthetic ERP modeling.

Specifically, our simulations are based on a cortical mesh
generated from high resolution MRI scans for a single individual
(MNI Colin 27, see Appendix C). However, the fact that ERPs are
usually reported in the literature as population averages begs the
question of whether the use of a population-average template
would not be more appropriate. Most of the existing EEG source
localization software (e.g. Oostenveld et al., 2011; Tadel, Baillet,
Mosher, Pantazis, & Leahy, 2011) address this issue by offering
the possibility to either (a) use a cortical mesh extracted from
an anatomical MRI scan of the individual from whom the EEG
signal has been recorded or (b) use a standard brain mesh (such
as MNI Colin 27) that can be warped to match sensors locations
or be used with standard sensor locations (which is similar to
our choice). However, (a) seems unsatisfactory for computational
neurolinguistics since most ERP data reported in the literature do
not come with associated cortical meshes. As to (b), the possibility
to use a population-template brain mesh is undermined by fact
that averaging surfaces from different brains remains a challenge
for which no standard solution has yet emerged (Auzias, Colliot,
Glaunes, Perrot, & Mangin, 2011; Dale, Fischl, & Sereno, 1999;
Fischl, Sereno, & Dale, 1999; Lyttelton, Boucher, Robbins, & Evans,
2007; Van Essen, 2005). Moreover, such an average seems more
likely to blur gyrification rather than provide a useful standard.
Thus, for now, it seems a reasonable strategy to use MNI Colin 27
as the basis for localization and orientation of cortical areas for a
neural network model.

Question (3) emphasizes the issues raised by the diversity of
brain region atlases used by modelers, the difficulty to quantita-
tively define the relations between them, and the difficulty to link
some of them to cortical geometry. The 2002model offered a good
example of this, using of a mixed ontology including parcellations
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of the cortical surface based on neural cytoarchitecture (Brodmann
areas), cortical folds (gyri and sulci), function (e.g. auditory cortex),
and lesion data (e.g. Broca’s area) (see Table 2). Without quantita-
tive treatment of these various nomenclatures, all pose problems
for the simulation of EEG signals. Individual variation in cortical
folds was already mentioned in relation to point (2), but in addi-
tion the idiosyncratic variations of localization within the cortical
folds of Brodmann areas have only recently started to be quanti-
tatively analyzed (Fischl et al., 2008). In particular, linking compu-
tational neurolinguistic models to ERP data will require a deeper
analysis of recent findings on the individual variations in Broca’s
area anatomy (Keller et al., 2009).

Finally, we note that the incorporation of empirical data from
non-human primate studies into neurolinguistic modeling, such
as single cell recordings or white matter connectivity, raises
between-species homology challenges (Arbib & Bota, 2003; Dea-
con, 2004). Neural networks have been extensively used to model
the brain functions of non-human primates. Their use in neu-
rolinguistics should be thought of not only in terms of their
computational power, but also as away tomake contact with com-
putational models of results from monkey neurophysiology. This
approach will incorporate evolutionary hypotheses into neurolin-
guistic computational models and test them against human neu-
roimaging data.

7.2. Models of language processing

The vast majority of neural network models associated with
language processing are unconstrained by brain imaging or
ERP data. A number of interesting models have, for example,
used Simple Recurrent Networks which can be trained, e.g., to
learn sequences in a way which replicates application of simple
constructions in forming sentences. Among the deepest studies
of this kind is one that addresses a range of psychological and
developmental data (Chang, 2002; Chang, Dell, & Bock, 2006)
but it does not address neurophysiological or neurological data.
Another model only addresses lexical access but does offer some
insight into aphasia (Dell, Schwartz, Martin, Saffran, & Gagnon,
1997). The GODIVA model of sequencing phonemes to form
words (Bohland, Bullock, & Guenther, 2010) does address a range
of neurophysiological data but is clearly at a lower level of
language processing than those that have engaged us in this article.
Dominey, extending earlier research modeling linkages between
cortex, basal ganglia and brain stem in the control and learning of
eye movements (Dominey & Arbib, 1992; Dominey et al., 1995),
provides a neurally plausiblemodel of the interaction of syntax and
semantics in the parsing of very simple sentences (Dominey, Hoen,
& Inui, 2006; Dominey, Inui, & Hoen, 2009). The model employs
recognition of the sequence of function words in a sentence
to provide access to the syntactic construction that assigns the
contentwords to their semantic roles. Previous attempts at relating
artificial neural network activity to language-related ERPs include
models of the dynamics of neural masses (David et al., 2011;
Yvert et al., 2012) but do not simulate the information processing
whereby the brain performs a given linguistic task (recall Table 1).
Another approach employs simple Hebbian networks but does
not analyze the impact and role of forward models on ERP signal
simulation (Garagnani, Wennekers, & Pulvermüller, 2008).

Of course, a major obstacle to neurophysiologically realistic
models of language processing is that only humans possess
language in the sense of an open-ended lexicon and a grammar that
allows the flexible production and comprehension of utterances
that convey novel meanings in diverse domains of discourse. As
noted earlier, there are two strategies for development of fine-scale
models of language processing that follow from this:
(1) One is to employ evolutionary hypotheses to create models
that combine (i) modules whose detailed neural circuitry can
be related to that of non-humans executing a similarsubfunction
and (ii) modules executing human-specific subfunctions for which
the circuitry can be structured on the basis of the evolutionary
hypotheses (see Aboitiz, 2012; Aboitiz, Aboitiz, & García, 2010;
Arbib, 2006, 2010, 2012, for examples of such hypotheses).

(2) The other is to abandon the use of simulated neurons as the
unit of processing and instead use networks of interacting schema
instances to work at a scale slightly coarser than that of neurons,
but farmore detailed than that of brain regions. Schema theory has
been employed successfully over the years in modeling visually
guided behaviors in frogs, rats, monkeys and humans where we
make crucial hypotheses as to the localization of schemas in
different parts of the brain. It was introduced to neurolinguistics by
Arbib and Caplan (1979); and we further developed links between
schema theory and language (aphasia, acquisition, production) in
Arbib, Conklin, and Hill (1987). Most recently, we have extended
schema theory to define Template Construction Grammar as a
mechanism linking vision and language in the description of visual
scenes (Arbib & Lee, 2007, 2008), but this model includes no
hypotheses on cerebral localization of schemas (though Lee and
Barrès (2013) have taken a small step in this direction by discussing
some aspects of aphasia). However, this article is not the place to
present background and references on schema theory, but only
to introduce the gap that currently exists between schema theory
and the constraints of Synthetic ERP. Crucially, schema-theoretic
models in their current form cannot support Synthetic ERP for at
least two reasons:

(a) Spatial: To employ Synthetic ERP, various schema subnetworks
would have to be assigned to different faces or slabs of a cortical
mesh or linked to subcortical regions;

(b) Temporal: To compute dA(t), ‘‘schema time’’ would have to be
mapped onto ‘‘neural time’’, and competition and cooperation
between cortical schema instances would have to be mapped
to patterns of activation of apical dendrite PSPs.

Solving (a) lies within the remit we have established within
this article for neural network modeling, whereas (b) poses new
challenges — but challenges that must be met since schema
theory serves as a bridge between the language of psychology and
the language of neuroscience, and this ‘‘translation’’ needs to be
extended to link ERPs as a tool for psycholinguistic observation to
a deeper understanding of the patterns of information processing
distributed across the brain.

Nonetheless, some links and challenges for the spatial problem
can now be made explicit. A phoneme recognition schema could
be relatively well localized around Heschl’s gyrus. However,
semantic memory can be represented as a widely distributed
schema network, making explicit the problem of mapping onto
the cortical geometry required for ERP modeling. There do exist
a range of conceptual models which complement the 2002 model
by offering competing views of how to systematize imaging and
ERP data by localizing different processes in different parts of the
brain, but they lack computational specificity (e.g. Hagoort, 2005;
Hickok, 2009). Schema theory however offers the flexibility to vary
the levels of detail incorporated in a brain model depending on
the current state of knowledge while maintaining brain-oriented
computational principles at all levels. Its role is to ensure that
at each stage of our understanding of a brain function, we can
express our knowledge in a computational form that can provide
simulation results that stimulate further research, both empirical
and computational. Each schema can then be broken down
into further sub-schemas (and, potentially, down to biologically
grounded neural networks) once the brain processes it represents
are better understood.
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7.3. In conclusion

Our earlier work on Synthetic Brain Imaging was motivated
by the need to link neural models (inspired in part by data from
primate neurophysiology) to the results of human brain imaging.
The presentwork addresses the challenge of linking suchmodels to
ERP data (and, although we have not discussed it here, the data of
magnetoencephalography). We saw that whereas DCM addresses
the issue ‘‘What aggregatedmeasures of underlying neural activity
could cause the observed ERP recordings?’’ our new Synthetic ERP
methodology is doubly causal, based on two phases:

Phase 1 addresses the question ‘‘What patterns of interaction
in neural circuitry could cause the observed behavior (and explain
single-cell recordings, where available)?’’ whereas

Phase 2 addresses the question ‘‘Could the aggregate activity
of neurons in the circuitry so modeled cause the observed ERP
recordings?’’

We have seen that Phase 2 is well-defined and has much in
common with DCM, but enforces the assumption that ERPs be
calculated using a forward model on the basis of dipoles whose
orientation is provided by orientation of the corresponding region
of cortex, rather than having arbitrary orientations based on one
of the many possible solutions to the inverse problem posed by
observed ERP data.

However, our work on Phase 1 is at an earlier stage of
development. The key point is that, in addition to the requirements
of neural network models used for Synthetic Brain Imaging that
they can be tested against single-cell data (where available) as
well as behavioral data, the neural networks used for Synthetic
ERP must include neuroanatomically realistic placement and
orientation of cortical pyramidal neurons. However, work on Phase
1 cannot (in general) succeed if only cortical regions are modeled
— subcortical structures such as basal ganglia and thalamus may
play a crucial role.

All this poses exciting challenges for future work in neural
networks that is intended to contribute to computational modeling
for systems and cognitive neuroscience. In particular, future work
in neurolinguistics will depend on both new approaches to the
structuring of empirical data and on the development of novel
computational models of language processing.

Finally, we noted the power of schema network models in
explaining behaviors for which the pool of relevant neuron-level
data is impoverished, but then raised the daunting question of how
to link activity of schema networks to anatomically localized and
oriented dipoles, in both space and time.
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Appendix A. General physical formulation of the forward
problem

Solving the forward model for EEG recording consists in
determining the electrical field generated by neural current
sources and measured by electrodes on the scalp. The 4 Maxwell
equations give the most general expression of the problem. Given
the relatively slow changes of the electric and magnetic fields
generated by neural sources (below 100 Hz), we can use the quasi-
static approximation of Maxwell’s equations:

∇ · E =
ρ

εε0
∇ · B = 0
∇ × E = 0
∇ × B = µ0J

(A.1)

as well as

∇ · J = 0 (Conservation of charge), (A.2)

where E is the electric field, B the magnetic field, J the current
density, ε the permittivity of the milieu, ρ the charge density, and
µ0, ε0 are respectively the permeability and permittivity of free
space.

It is convenient to separate the primary currents JP , which
correspond to the currents generated directly by the neural sources
and creating the electric field, from the secondary or return
currents JS which are caused by the existence of the field. Following
Ohms law we write JS = σE, where σ is the conductivity (which
need not be isotropic or homogeneous in the general case). It
follows that:

J = JP + σE. (A.3)

Finally, since E is irrotational, we can define a scalar potential V
such that:

E = −∇V . (A.4)

From there the Poisson equation for the electric potential:

∇ · (σ∇V) = ∇ · JP . (A.5)

We are interested in the potential only at the positions on the
scalp where electrodes are located. Solving the forward problem
for EEG consists in solving the Poisson equation for primary
currents generated by the brain’s activity. To do so, one needs
to stipulate: (a) what the primary current sources are: this is
the role of the current dipole model (see Appendix B); (b) what
the conductivities are: this is the role of the head model (see
Appendix C); amethod (analytic or numerical) to solve the Poisson
equation: we review here the Boundary ElementMethod (BEM) (see
Appendix E).

Appendix B. Dipole modeling of current sources

Although the activity of every neuron generates currents, both
in the dendrites and in the axons, the activity of individual
neurons is not sufficient to yield a detectable electric field at the
surface of the scalp. Only the local summation of the currents
generated by many neurons can result in measurable changes in
the electroencephalogram. For currents to be additive, neurons
need to be synchronously active and have a spatial arrangement
that enables the amplification of the field. Such a configuration
is found in the pyramidal neurons of the cortex whose dendritic
currents are thought to be the main sources of EEG signals.
Neighboring pyramidal neurons have apical dendrites arranged
parallel to one another and perpendicular to the cortical surface
in a palisade-like configuration (cf. Fig. 14, left). Dendrites and
not axons can display significant synchronous activity since the
duration of post synaptic potentials is much longer than that of
action potentials, favoring overlapping activation between cells.
Finally the excitatory synapses tend to be localized at the apex
of the dendritic tree of pyramidal neurons, while the inhibitory
synapses tend to cluster around the soma.

Focusing on excitatory synapses, excitatory post-synaptic
potentials (EPSPs) result in the pyramidal neurons in currents
flowing both in the dendrites and in the extra-cellular environment
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Fig. 13. Modeling of a pyramidal neuron as a current dipole. (a) Currents generated by an apical excitatory synapse in the pyramidal neuron. Excitatory synapses tend to
be localized in the apical region of the dendritic tree of pyramidal neurons, while inhibitory synapses tend to be localized near the soma. Currents are generated both in
the dendrite and in the extracellular environment. (b) Model of the same neuron as a current sink and a current source located at the apex and at the soma of the neuron
respectively. The source and sink are modeled as punctual, separated by a distance L, and ‘‘pumping’’ an equivalent amount of current I. (c) Such a configuration can be
modeled as a current dipole oriented from the sink to the source, located between the two sources, and whose moment is equal to the product of the current ‘‘pumped’’ by
the distance between sources. Such a dipole approximation is valid when the distance at which the field is measured is large compared to L.
Fig. 14. Mesoscopic current dipole model of a patch of cortex. On the right side
is depicted the unique organization of pyramidal cells in a palisade-like layer in
which the apical dendrites are all oriented perpendicular to the cortical surface.
Each neuron is here modeled as a current dipole (cf. Fig. 13). On the left side, the
whole patch of cortex is modeled as a unique dipole representing the summed
contributions of each individual neuron. This summation is made possible by
the configuration of apical dendrites. The resulting dipole is perpendicular to the
cortical surface and located at the center of the cortical patch. Such a mesoscopic
dipolemodel rests on the hypothesis that any deviation from collinearity of neuron-
level dipoles is small (i.e. curvature of cortex is negligible), the distance between
neuron-level dipoles is small compared to the distance between the cortical patch
and the locus of measurement of the field, and finally that the neurons’ activities
coincide at least partially in time. This possibility to sum up individual neuron
current contributions is a necessary condition for a current source to be strong
enough to yield an electric field that can be measured using EEG.

that can be modeled as in Fig. 13(a). In turn, such currents can
be modeled as a current sink at the apex and a current source at
the soma, equal in strength, separated by a distance L. Fig. 13(b)
represents such a model with ra the position of the apical sink, rs
the position of the source at the soma, J the current density, and ed a
unit vector pointing from the sink to the source. This configuration
can further be modeled as current dipole {d, rd} as presented in
Fig. 13(c). The dipole is assigned to the position rd =

rs+ra
2 . Its

moment is defined as ∥d∥ = d = L · I . The dipole is oriented along
ed from the sink to the source.

Modeling of a current sink and source equal in strength by
a dipole can be derived from the multipole expansion of the
formulation of the field. In this formulation, the first order dipole
approximate of the source gives a good account of the field when
the distance at which the field is measured is large compared to
L. A current dipole can therefore be used at a microscopic level to
model the electric activity of a single pyramidal cell.

On the left of Fig. 14, is schematized a layer of pyramidal neu-
rons, each one associatedwith a current dipole. The specific spatial
configuration results in all the neuron-level dipoles to be oriented
perpendicular to the cortical surface. To the extent that the cur-
vature of the cortex can be neglected, the dipoles can be approxi-
mated as locally collinear.

As shown in Fig. 14 (right), a patch of cortex can therefore
be represented by a mesoscopic-level dipole summarizing the
activity of the pyramidal neurons. However, such an extra step in
modeling the current sources is valid only inasmuch as: (1) the
deviation from collinearity in the dipoles due to cortical curvature
is negligible, (2) the neuron-level dipoles are close to each other
relative to the distance of measurement of the field, and (3) the
activity of the neurons is hypothesized to be synchronous. Given
these hypotheses, a current dipole can be used to model the
dendritic currents generated by a population of pyramidal cells in
a small patch of cortex. The 6 parameters that define the dipole
can in theory be specified: it is located at the center of the patch,
oriented perpendicular to the cortical surface pointing inward, its
amplitude can be derived from the synaptic activity of the given
neuronal population.

Primary current sources can from here be modeled either as
focal single dipoles (in the case of a few very local activations, a
common hypothesis for modeling epileptic seizures), or as dipoles
distributions (in which case large patches of cortex are modeled as
a distribution of dipoles anatomically constrained by the cortical
topology).

Appendix C. Conductor modeling: the head model

Solving Eq. (A.5) requires not only the definition of the primary
sources (see Appendix B) but also the definition of the conductivity
tensor σ

−→r  of the media in which the electric field propagates.
To do so we make the following hypotheses: (1) the head as a
conductor can be modeled as a series of embedded conduction
volumes, typically brain, skull, and scalp (but more complex
models can be considered); (2) the boundary between these
volumes can be modeled by realistic meshes extracted from
anatomical MRI (spherical head models can also be used that
allow analytical solutions); (3) the conductivity of each conduction
volume can be considered homogeneous and isotropic.

The last point allows the use of the Boundary Element Method
to find numerical solutions to Eq. (A.5) (see Appendix E). However,
the isotropy hypothesis has been challenged in the case of the skull
and white matter. In addition, the values of the conductivities are
still debated and tend to depend on the method used to measure
them (for a review see Hallez et al., 2007).

Fig. 15 describes the head model we used in our work. The
absence of a model of subcortical elements is a limitation of
most head models. In addition, the use of a head model in the
computation of EEG signals begs the question of ‘‘what head’’
should be used. We here use a realistic head model derived
from high-resolution anatomical MRI data acquired from a single
subject. But no standard has so far been developed for the head
model.
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Fig. 15. The head model. The head model defines the media in which the electric
field propagates. We use a realistic headmodel composed of 4 conduction volumes.
From the innermost volume to the outermost: brain, cerebrospinal fluid, skull, and
scalp. These volumes are separated by boundaries defined as triangular meshes:
gray matter surface, inner skull, outer skull, and scalp. The meshes are computed
from 27 high-resolution anatomical MRI images of a single individual (MNI meshes
provided by Brainstorm and extracted using BrainVisa software). Except for the
scalp mesh, we used the convex hull associated with the MNI Colin27 meshes to
alleviate computation. In our work, we make the hypothesis that each volume has
a homogeneous and isotropic conductivity.

The implementation of Phase 2 of Synthetic ERP reported here
uses a 4-compartment head model based on the MNI Colin27 MRI
scans (Evans et al., 1993; Mazziotta et al., 1995) which provides
meshes respectively representing the surfaces defined by the gray
matter, the inner skull, the outer skull, and the outer surface of
the scalp. The ventricles are ignored in the present model. The
meshes are triangular meshes provided by the Brainstorm default
anatomy (Tadel et al., 2011) and extracted from the MNI Collins
MRI scans using BrainVisa software. If the exact geometry of the
brain surface is required to compute the orientation of the dipoles,
the computation of the electromagnetic field can be greatly
alleviated with a minimal impact on the solution by simplifying
the geometry of the conduction volumes. For this reason, the head
meshes which define the volume boundaries of the head model
for the computation of the forward solution are the convex hulls
associated with the MNI Colin27 brain, inner skull, and outer skull
(but the scalp mesh was kept in its Brainstorm version for display
purposes). We used the conductivity measurements provided by
Oostendorp et al. (2000) (Brain: 0.22, CSF: 1.79, Skull: 0.015, Scalp:
0.22 S/m).

Few ERP experiments report the stereotactic positions of the
electrodes used during the EEG recording. Synthetic ERP therefore
uses default 65 electrodes 10/10 standard electrode systems and
electrodes positions provided by Brainstorm (for a review of the
existing electrode systems see Jurcak, Tsuzuki, and Dan (2007)).
(See Fig. 16.)

Appendix D. Algebraic formulation

For multiple points of measurements of the electric potential
(electrodes) and multiple sources (dipoles), it is useful to give the
forward problem a compact algebraic formulation. Given a dipole
with position rdip and moment d, the electric potential measured
at an electrode with position r solution of the Poisson equation (6)
can be written:

V (r) = g(r, rdip, d). (D.1)

The Poisson equation is linear. If we note d = d.edip, whereedip = 1, we can write:

V (r) = g

r, rdip, edip


· d. (D.2)

The electric potential generated by a dipole at the location of an
electrode depends linearly on the amplitude of the dipole, i.e. on
the neural activity. However, it does not depend linearly on the
position and orientation of the dipole (defined by the geometry of
the cortex).

For N dipoles

r jdip, e

j
dip, d

j


, j ∈ [[1,N]], and K electrodes

with positions rk , k ∈ [[1, K ]], given the linearity of the Poisson
equation, we can write:

∀ k ∈ [[1, K ]], V

rk


=

N
j=1

g

r j, r jdip, ejdip


· dj. (D.3)

Therefore:

V = GD, (D.4)

with:

V =

V

r1


· · ·

V

rK

 ∈ RK ,
Fig. 16. Sensors positions. Sensor positions are defined as the default MNI coordinates of the 10/10 65 channels EEG electrode cap as defined by Brainstorm and associated
with the MNI Collins head meshes. The electric field, output of the forward model, is computed at the sensors’ positions.
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electrode measurements vector, function of the electrodes posi-
tions.

G =

g

r1, r1dip, e1dip


· · · g


r1, rNdip, eNdip


· · ·

. . . · · ·

g

rK , r1dip, e1dip


· · · g


rK , rNdip, eNdip


RK×N ,

gain matrix function of the sources positions, orientations, and of
the electrodes positions.

D =

d1

· · ·

dN

 ∈ RN ,

dipole amplitudes vector.
If the positions of electrodes are fixed aswell as the position and

orientation of the sources with only the amplitudes of the sources
varying in time, Eq. (D.4) can be rewritten

V (t) = GD(t). (D.4′)

Since the gain matrix G does not depend on time in these condi-
tions, it can be computed only once for a set of sources. The EEG
recordings V (t) is simply a linear combination of the source wave-
form functions dj(t), j ∈ [[1,N]].

Appendix E. Numerical method: boundary element method
(BEM)

Although analytical solutions can be found for the Poisson
equation (see Appendix A, Eq. (A.5)) in the case of spherical
head models, the use of realistic head models requires the use
of numerical methods. In the case of homogeneous and isotropic
conductivities, which remains a common assumption for the
forward problem, Eq. (A.5) can be numerically solved using
the Boundary Element Method (BEM). In more complex cases
(conductivities non-isotropic and/or non-homogeneous), other
methods are available such as Finite Element Method (FEM). The
strength of the BEM rests in the fact that the potential at any
point on a boundary can be determined by its values on the
other boundaries. Hence only these boundary values needs to be
numerically computed which reduces the size of the problem.
Since for EEG we are measuring the electric potential on the
scalp, we are only interested in the values on this boundary.
FEM approaches on the other hand require computing numerical
values for the electric potential at every point in space. In a
nutshell, the BEM approach consists in computing the values of
the electric potential on the conductors’ volumes boundaries by
approximating the continuous boundaries as a tessellation of small
boundary elements.

The BEM rests on the integral formulation of the Poisson
equation in the case of NV conductor volumes of conductivities
σk separated by NS surface boundaries Si. Due to the linearity of
the problem (see preceding section), we will here, without loss of
generality, consider the case of a single source dipole {rdip, d}. It has
been shown elsewhere (Sarvas, 1987) that the integral formulation
of Eq. (A.5) can be written:

V (r) =
2σ0

σ−

k + σ+

k
V0 (r)

+
1
2π

NS
j=1

σ−

j − σ+

j

σ−

k + σ+

k


r ′∈Sj

V (r ′)

∥r − r ′∥
2

r − r ′

∥r − r ′∥
dSj


,

for r ∈ Sk, (E.1)

where V0 is the potential that would be generated by the dipole
source in an infinite medium whose conductivity is that of the
medium in which the source is located (the brain in our case). σ0
is the conductivity of this medium (here the conductivity of the
brain). For a point r ∈ Sn, σ+

n and σ−
n refer respectively to the

conductivity outside and inside the boundary defined by Sn.
In the case of a current density distribution modeled as a single

dipole {rdip, d}, V0 (r) has a straightforward analytical value:

V0 (r) =
1

4πσ0

d ·

r − rdip

r − rdip
3 . (E.2)

The boundary element method consists in first approximating
the surface integrals in Eq. (E.1) by tessellating each surface
boundary Sk into nSk triangles surface elements ∆

Sk
i , i ∈ [[1, nSk ]].

Eq. (E.1) can then be approximated by:

V (r) =
2σ0

σ−

k + σ+

k
V0 (r) +

1
2π

NS
j=1

σ−

j − σ+

j

σ−

k + σ+

k

×

nSj
i=1


r ′∈∆

Sj
i

V (r ′)

∥r − r ′∥
2

r − r ′

∥r − r ′∥
dSj


. (E.3)

The second step consists in approximating V j (r) on each
boundary Sj by Ṽ j (r) defined as the linear combination of simple
basis functions hp (r) , p ∈ [[1, nSj ]].

Ṽ j (r) =

nSj
p=1

Vj,php (r) . (E.4)

We can then rewrite Eq. (E.3):

V (r) =
2σ0

σ−

k + σ+

k
V0 (r) +

1
2π

NS
j=1

σ−

j − σ+

j

σ−

k + σ+

k

×

nSj
i=1

nSj
p=1

Vj,p


r ′∈∆

Sj
i

hp(r ′)

∥r − r ′∥
2

r − r ′

∥r − r ′∥
dSj


. (E.5)

A common choice for the basis function is to consider the set of
basis functions such that on surface Sj

hp(r) =


1 if r ∈ ∆

Sj
p

0 otherwise,

which corresponds to an approximation that the electric potential
is constant on each triangular boundary element.

The final approximation consists in defining so called collocation
points at which the basis functions will be numerically estimated.
The collocation points are typically the centroids of the triangular
boundary elements.

Writing Eq. (E.5) for each one of these collocation points result
in a set of equations that can be solved to determine the coefficient
Vj,p for each triangular element p on each surface Sj.

The forward problem corresponds in this case in solving a
system of linear equations, which requires the inversion of a dense
matrix with a size of the order of number of boundary elements
defined. The size of the matrix is relatively small since we do not
need to compute parameters for each point in the volume and
depends on the coarseness of the tessellations used.

Going back to Eq. (D.4′) (see Appendix D), the matrix inversion
need only to be done once for a given location and orientation of
the dipole sources (and location of the sensors) to define the gain
matrix.

In this paper, the forwardmodel is computedusing the FieldTrip
(Oostenveld et al., 2011) MatLab implementation of OpenMEEG
version of BEM (Gramfort et al., 2011).
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