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ABSTRACT

The present paper is part of a larger effort to locate the production and perception of
language within the broader context of brain mechanisms for action and perception more
generally. Here we model function in terms of the competition and cooperation of schemas.
We use the task of describing visual scenes to explore the suitability of Construction
Grammar as an appropriate framework for a schema-based linguistics. We recall the early
VISIONS model of schema-based computer analysis of static visual scenes and then
introduce SemRep as a graphical representation of dynamic visual scenes designed to
support the generation of varied descriptions of episodes. We report preliminary results on
implementing the production of sentences using Template Construction Grammar (TCG), a
new form of construction grammar distinguished by its use of SemRep to express semantics.
We summarize data on neural correlates relevant to future work on TCG within the context
of neurolinguistics, and show how the relation between SemRep and TCG can serve as the
basis for modeling language comprehension.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

mirror system for words, a mirror system for actions, and
neural mechanisms supporting the processing of perceptual

To approach the general issue of how the brain can go back
and forth between semantic representations and the utter-
ances of some language, we focus on how one may go from a
visual scene to a description of that scene. We briefly outline
how the brain may be modeled in terms of the competition
and cooperation of functional entities called schemas and
then present an argument concerning the linkage between a

and motor schemas. We then complete our tour of necessary
background by recalling key features of the VISIONS model of
schema-based computer analysis of static scenes. The
remainder of the paper is not about neurolinguistics per se,
but rather it offers hypotheses on how visual and linguistic
structures may be represented in such a way that each may be
mapped into the other through schema interactions. It will be
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the task of future papers to offer explicit hypotheses about the
localization of these processes in the human brain.

Section 2 explains how the processes developed in VISIONS
for the competition and cooperation of schemas in the
analysis of static visual scenes may be extended to the
analysis of episodes in the interpretation of ongoing visual
experience. This extension of VISIONS provides the input for
SemReps, graphical representations of dynamic visual scenes
which can support the generation of varied descriptions of
episodes. Section 3 then presents Template Construction
Grammar (TCG), the version of construction grammar in
which we locate our current efforts to implement mechanisms
for the parsing and production of sentences which express the
information encoded in SemReps. Section 4 then works
through a detailed example of how TCG can operate to convert
a SemRep into a sentence. Finally, Section 5 compares TCG
with other models of CG, summarizes data on neural cor-
relates of vision and language relevant to future work on TCG
within the context of neurolinguistics, and shows how the
relation between SemRep and TCG can serve as the basis for
modeling language comprehension.

1.1. Schemas which compete and cooperate

In the present paper, we approach brain mechanisms of vision
and language through the analysis of “schemas” as the
“distributed programs” of the brain, at a level above, but
reducible to, the functioning of neural networks. For example,
we have perceptual schemas recognizing apples and doors, and
motor schemas for peeling apples and opening doors. Each of
these schemas constitutes a psychological reality and we can
combine schemas into coordinated control programs and
schema assemblages (Arbib, 1981; Arbib et al., 1998) to define
complex courses of action. It may help to note the distinction
between basic and neural schema theory:

Basic Schema Theory works at a functional level which
associates schemas with specific perceptual, motor, and
cognitive abilities and then stresses how our mental life
results from the dynamic interaction - the competition and
cooperation - of many schema instances. It refines and
extends an overly phenomenological account of the “mental
level”. There are echoes here of the use of the term schema in
neurology (Head and Holmes, 1911), psychology of memory
(Bartlett, 1932), kinesiology (Schmidt, 1975), and genetic
epistemology (Piaget, 1971).

Neural Schema Theory provides the “downward” extension
of basic schema theory as we seek to understand how
schemas and their interactions may indeed be played out
over neural circuitry - a basic move from psychology and
cognitive science as classically conceived (viewing the mind
“from the outside”) to cognitive neuroscience. However, the
linkage of schemas to brain regions may serve not only as the
framework for modeling neural circuitry but may also ground
models “at the schema level” which can be tested against
lesion data and brain imaging (Arbib et al., 1998), a level which
seems particularly relevant to neurolinguistic studies.

The notion of coordinated control program (Arbib, 1981) shows
how to build up complex skills from available perceptual and
motor schemas (where the perceptual schemas may register
the external environment, or the degree of achievement of

goals and subgoals), and includes specification of both how
data are to be transferred between schemas and how schemas
are to be activated and deactivated. In particular, perceptual
schemas may estimate the value of parameters relevant to the
way in which motor schemas control ongoing action.
Lyons and Arbib (1989) provided a complete formalism for
the combination of schemas into coordinated control pro-
grams, and the resultant RS (Robot Schema) language has
been used to develop a range of programs for embodied,
perceptually-guided behavior of robots. However, in this paper
we focus on the way in which schemas may be associated with
a visual scene to yield a Semantic Representation (SemRep)
that can be used as the basis for generating a verbal des-
cription of the scene. It remains a challenge for future research
to integrate the RS formalism with the tools for sentence
construction of Template Construction Grammar (TCG) pre-
sented in Section 3.

In this paper, we focus on the role of vision in segmenting a
scene and labeling the regions, or detecting characteristic
patterns of motion in a videoclip to provide a semantic
representation which can challenge our research on brain
mechanisms of language. However, this is just one facet of a
broader approach to vision which is concerned with its
relevance to the ongoing behavior of an embodied agent —
be it frog, rat, monkey, human or robot (Arbib and Liaw, 1995;
Arbib, 2003). A given action may be invoked in a wide variety of
circumstances; a given perception may precede many courses
of action. There is no one grand “apple schema” which links all
“apple perception strategies” to “every action that involves an
apple”. Moreover, in the schema-theoretic approach, “apple
perception” is not mere categorization — “this is an apple” -
but may provide access to a range of parameters relevant to
interaction with the apple at hand.

The notion of schema assemblage relates to the observation
(Arbib and Didday, 1971) that perception of a scene may be
modeled as invoking instances of perceptual schemas for
certain aspects of the scene, but not simply as discrete labels
— each schema instance has parameters related to size,
location and other features of the represented element of the
scene. Here, a perceptual schema is the knowledge in long-
term memory of, e.g., how to recognize a chair when one sees
one, whereas our working memory of a scene will contain a
separate schema instance for /chair/ for each region that
application of that knowledge assesses as being, with some
level of confidence, a chair. The emerging pattern of schema
instances which comes to represent the scene (and thus give it
its current meaning to the observer) may result from extensive
processes of competition and cooperation in the schema
network which invoke schemas beyond those initially asso-
ciated with the scene. Cooperation occurs in, for example, the
mutual increase of the confidence level of schema instances
for different regions of the image if each provides a plausible
context for the other — the schema for “foliage” gets a boost for
interpreting the region just above a region already interpreted
as a tree trunk, and vice versa. Competition occurs when
schemas compete to interpret a particular region of a scene —
“Is that a bird, is it a plane? No, it’s Superman.” Thus, a schema
instance may initially become more active if it is consistent
with more features of a region which it is competing to
interpret. Cooperation then yields a pattern of “strengthened
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alliances” between mutually consistent schema instances
that allows them to achieve high activity levels to constitute
the overall solution of a problem. As a result of competition,
instances which do not meet the evolving consensus lose
activity, and thus are not part of this solution (though their
continuing subthreshold activity may well affect later beha-
vior). Successful instances of perceptual schemas become part
of the current representation of the environment in working
memory.

1.2 From mirror neurons to neurolinguistics

The general conceptual model of Fig. 1 (Arbib, 2006) links brain
mechanisms for the perception and production of language to
more general mechanisms for scene perception and praxic
action, and - while much broader in scope - is consistent with
the analysis of the roles of the dorsal and ventral streams in
speech processing posited by Hickok and Poeppel (2004, 2007).
The top half of the figure summarizes the general notion of the
Mirror System Hypothesis (Arbib, 2005; Rizzolatti and Arbib,
1998), namely that the dorsal stream in humans contains
mirror systems for both praxic actions and for words
considered as articulatory-actions (which may include man-
ual and facial as well as vocal production). However, the model
posits that the relation between the two systems is not one of
direct connectivity in which activating the mirror neuron
encoding of an action elicits the mirror neuron representation
of a corresponding verb. Indeed, relatively few words are verbs
for actions within the speaker’s repertoire and so relatively
few can have their neural representation linked to mirror
neurons for actions.

The relation with the upper and lower portions of Fig. 1 is
inspired by the FARS model (Fagg and Arbib, 1998) of how
prefrontal influences (e.g., task knowledge or working mem-
ory) determined via the ventral stream may affect which
motor schema for an action compatible with affordances
selected by parietal cortex, as determined by the dorsal
stream, will be brought above threshold for execution in
premotor cortex. We posit that the dorsal mirror system for
words-as-articulatory-actions is linked to a system in the

Mirror
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Fig. 1 - (from Arbib, 2006). Words link to schemas, not
directly to the dorsal path for actions. Consider, for example,
the differential linkage of nouns and verbs to perception of
the objects and actions, respectively, that they denote.

ventral stream and prefrontal cortex that supports the action-
oriented perception which builds a schema-based representa-
tion of the external world in the service of planning the
ongoing behavior of the organism.

The notion, then, is that the ventral pathway selects which
actions to deploy and (via pathway (a)) activates the para-
meterized motor schemas to execute those actions. According
to the Mirror System Hypothesis, in humans evolution has
“lifted” this set of processes so that a schema assemblage
(which in this case may be far more abstract than linking the
current scene with a plan of action) can ground the planning of
utterances which can in turn deploy and (via pathway (b))
activate the parameterized motor schemas to articulate the
words of that utterance.

Our concern in the present paper is with two questions
concerning the lowermost box of Fig. 1:

la) How is the schema assemblage that represents the
current scene or (more generally) the recent history of the
current scene to be represented in a form which grounds
verbal description of the scene?

1b) How is this representation to be converted into one or
more sentences?

We will expand here upon answers provided earlier (Arbib
and Lee, 2007):

2a) SemRep (Section 2) will provide the semantic structure
for scene description.

2b) Template Construction Grammar (Section 3) will
provide the mechanisms for generating descriptions cor-
responding to a given SemRep.

1.3.  The VISIONS system

An early example of schema-based interpretation for visual
scene analysis is the VISIONS system (Draper et al., 1989)
which deploys a set of perceptual schemas to label objects in a
static visual scene. In VISIONS, the general nature of the scene
(e.g., an outdoor scene with houses, trees, lawn, etc.) is
prespecified, and only those schemas are deployed which
are relevant to recognizing this kind of scene. Nonetheless, the
challenge of recognizing what object is located where in the
scene remains daunting, and distressingly little work has been
done on general mechanisms of visual scene analysis since
the VISIONS effort.

When a new image is presented to the VISIONS system for
processing, low-level processes akin to those at early stages of
the mammalian visual cortex build a representation in the
intermediate database — including contours and surfaces tagged
with features such as color, texture, shape, size and location.
An important point is that the segmentation of the scene in
the intermediate database is not static, but may change as the
process of interpretation proceeds. This is because it is based
not only on bottom-up input (data-driven) but also on top-
down hypotheses (e.g., that a large region may correspond to
two objects, and thus should be resegmented). More generally
(though this was outside the scope of the VISIONS effort), the
analysis of the image will depend on how attention is focused
on different parts of the image, and with different attention to
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detail; and this in turn will depend on the current goals or task
requirements of the observer (Itti and Arbib, 2006).

VISIONS applies perceptual schemas across the whole
intermediate representation to form confidence values for
the presence of objects like houses, walls and trees. The
schemas are stored in LTM (long-term memory), while the
state of interpretation of the particular scene unfolds in WM
(working memory — Draper et al., 1989, refer to this as STM,
short-term memory) as a network of schema instances which
link parameterized copies of schemas to specific portions of
the image to represent aspects of the scene of continuing
relevance.

VISIONS uses activation values so that schema instances
may compete and cooperate to determine which ones enter
into the equilibrium schema analysis of a visual scene.
Interpretation of a novel scene starts with the data-driven
instantiation of several schemas (e.g., a certain range of color
and texture in part of the image might cue an instance of the
foliage schema). When a schema instance is activated, it is
linked with an associated area of the image and an associated
set of local variables. Each schema instance in WM has an
associated confidence level which changes on the basis of
interactions with other units in WM. The WM network makes
context explicit: each object represents a context for further
processing. Thus, once several schema instances are active,
they may instantiate others in a “hypothesis-driven” way (e.g.,
recognizing what appears to be a roof will activate an instance
of the house schema to seek confirming evidence in the region
below that of the putative roof). Ensuing computation is based
on the competition and cooperation of concurrently active
schema instances, as activated schema instances formulate
hypotheses, set goals, and then iterate the process of adjusting
the activity level of schemas linked to the image until a
coherent interpretation of (parts of) the scene is obtained.

2. SemRep: A semantic representation for
dynamic visual scenes

The range of speech acts is immense — we can request, cajole,
lie, inform and ask questions, to name just a few. Here we
focus on one type of speech act that must have held great
importance in the evolution of language — the ability to
describe to another those aspects of the environment that
have caught one’s attention. Such a description provides a
compact representation of the scene that is readily commu-
nicable as a string of words, and thus cannot do justice to all
the nuances of a scene, though one or two may be singled out
for explicit mention. Our first step, then, is to find an
economical semantic representation of a visual scene that is
directly related to the structure of schema instantiations
returned by neural processes akin to those of the VISIONS
system, and yet can serve as the basis for generating a
sentence according to some grammar. Since we move beyond
VISIONS to dynamic scenes, we introduce timeline considera-
tions. We have two 2D images at each time or, equivalently, a
2'/2 D sketch (Marr, 1982) from which the 3D (and temporal)
distribution of objects, actions and attributes is to be inferred.
Whether for vision or language, the various representations
are evanescent, and the brain must employ working memory

of certain relevant prior activity, and a “working precognition”
that holds expectations, goals and other activity relevant to
possible courses of action. In neither case should one expect
the necessary activity to be gathered in a single neural
structure.

In VISIONS, the intermediate data base is dynamic even for
static visual input. It provides a current estimate of relevant
information about edges, regions, shapes, colors, textures, etc.
The inputis fixed and interpretation continues until the image
is interpreted. However, shifting attention or task demands
can change the interpretation by attending to details or
regions that had not yet been fully analyzed. The top-level of
VISIONS provides a set of schema instances each linked to a
certain region of the image, each provided with certain cross-
linkages (e.g., a roof is part of a house) as well as certain
parameters. Let us now extend this to dynamic scenes:

2.1. Intermediate database

At any time t, there will be a state I(t) of the intermediate
database, which assigns to each point in the visual field a set
of features, and also demarcates regions and boundaries,
providing descriptors such as orientation and contrast along
each boundary, and information about color, depth, shape and
motion for each region. However, I(t) does not interpret the
regions. It changes in response both to changes in retinal
activity (depending on changes of light from the external
world as well as changes in eye position, vergence, accom-
modation, etc.) and to top-down influences from schema
processing.

2.2.  Visual working memory

At each time, visual working memory SI(t) will contain a set of
schema instances, with each associated with a region (or
union of regions) delimited in I(t), with each schema instance
having an associated confidence level, and an associated set of
parameter values which are specific to that schema but which
may be shared with sets of related schemas. Change in SI(t) is
relatively conservative. If the region to which a schema
instance in I(t) is linked remains (even if changed somewhat)
in I(t) then that schema instance will probably remain in SI(t’)
for t’ somewhat greater than t, but with a change in confidence
level based on the dynamics of competition and cooperation.
However, discontinuities arise, as shifting attention may
render certain schema instances as no longer of interest
while other new ones may be invoked.

2.3. Minimal or anchored subscene

The notion introduced by Itti and Arbib (2006) is that once an
object or action has become of sufficient interest, it will act as
an “anchor” for directing attention in such a way as to find
other aspects of the scene which are related to that anchor.
Thus, among the schema instances which are most active at a
given time, there will be a certain number which cohere to
define a “scene” or “episode”. We thus divide time into
alternating periods (tn, sn; Wy) such that an anchor is defined
at time t,, the anchored subscene is developed through
schema instance competition and cooperation by s,, and
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remains the dominant coalition of schema instances until
time w,. Note, then, that, the set of schema instances above
any given threshold value at time t, may constitute zero, one
or more anchored subscenes, with several “spare” schema
instances that have not been linked to other instances to form
a subscene but may yet (but need not) provide anchors for later
formation of novel subscenes.

Given this, we introduce SemRep as an encapsulation of
what is in visual working memory which is organized around
the notion of anchored subscenes. We will define SemRep
below as a hierarchical graph-like representation of a visual
scene, whether static or dynamically extended over time (an
episode). A SemRep graph structure represents the semantics
of some of the cognitively salient elements of the scene. We
see SemRep as an abstraction from the schema assemblages
generated by the VISIONS system but with the crucial addition
of actions and events extended in time. A cautionary note: the
analysis of single images in VISIONS is only the “opening
wedge” for dynamic scene analysis (Itti and Arbib, 2006). Thus,
if we see a single picture of a man with a woman’s hand flat
against his cheek, and we have no cues from his facial
expression, we could not tell whether the scene is “woman
slapping man” or “woman stroking man’s cheek” unless we
could see the temporal sequence of which this is part. In this
regard, note that the MNS model of action recognition
(Bonaiuto et al., 2007; Oztop and Arbib, 2002) is based on
recognizing the temporal trajectory of a hand relative to an
object. This model can serve as the basis for other models of
action recognition, as indicated by the generalized features of
our model summarized as follows:

2.4.  Action recognition schema

An action recognition schema takes as inputs visual data
concerning two trackable regions of the image, R;(t) and R,(t),
and invokes perceptual schemas to classify the two regions as
B; and B,, and use this classification to track certain key
features of B; and B, as they appear in Ry(t) and R,(t). The
action recognition schema then uses relative trajectories of
certain of these features as the basis for classifying the action
which is taking place.

For example, in the MNS model, one region must be
recognized as a hand and the other as an object with the
corresponding features being based on wrist and finger
positions for the hand and affordances (position of surfaces
to which an action may be applied, in this case) for the object.
The system then takes the trajectory of hand features as
expressed in an object-centered framework, and returns a
confidence level for different actions such as precision pinch
and power grasp, with (in general) the confidence level for a
single action rising well above the others as the action moves
towards completion.

Thus, an action involves a dynamic region of visual space
which contains the regions for (for example) the agent and
patient of the action, and the space in which they move
together. In the version of SemRep presented here, we
represent such a situation as an edge, associated with an
action, which links nodes for the agent and patient of the
action. Future work will explore alternatives in which a node
for the action is linked to the bounding region of the action,

with an agent-link and a patient-link to nodes which are
linked to the regions of the scene corresponding to the agent
and action, respectively.

Only cognitively important events are encoded into Sem-
Rep while others are simply discarded or absorbed into other
entities. The same scene can have many different SemReps,
depending on the current task and on the history of attention.
A prime motivation is to ensure that this representation be
usable to produce sentences that describe the scene, allowing
SemRep to bridge between vision and language.

In VISIONS, the schema instance level may invoke the
intermediate database to in turn invoke further processing to
return answers needed to assist the competition and coopera-
tion between schema instances, so we must understand that
SemRep is not an isolated graphical representation but is
instead linked to the schema instance level but gives only a
partial view of it. Each node is linked to a region of the image
either via the schema instance for that region (e.g., for an
object) or to parameters describing that region (as when an
attribute is linked to a node corresponding to that region) or to
the linkage between regions related to agents or objects (as in
the case of actions or spatial relations) which may encompass
a somewhat larger region.

We noted earlier that a schema may be associated with a
number of parameters. Some of these parameters may be
relevant to possible interactions with an object which the
schema represents, for example, and yet not be available to
verbal expression or pantomime (Goodale and Milner, 1992).
But even those parameters which could be available may not
be available, and will only become available if they are needed
for cognitive processing, such as the planning (rather than the
execution) of action, for problem-solving, or for verbal
description. However, just as VISIONS shows how the
demands of schema instantiation can generate new proces-
sing requests back down to the intermediate data base, so we
postulate that SemRep need explicitly represent very few
parameters, and can direct requests to Visual Working
Memory when the information is needed for cognitive
processes. In other words, while some parameters may be
explicitly represented at this level, others are simply “avail-
able” at this level in that enquiries addressed to SemRep may
be passed to the schema instance level. Such enquiries may, if
necessary, be routed via spatial covering back to lower levels
which contain more precise information on, e.g., shape or the
distribution of color or texture. Each parameter which does get
made explicit at the SemRep level is considered an attribute
and given its own node to be linked to the node for the
parameterized schema.

The structure of SemRep does not have to follow the actual
changes of an event of interest, but may focus on “concep-
tually significant changes” — a crucial difference from a
sensorimotor representation, where motor control requires
continual tracking of task-related parameters. For example, an
event describable by the sentence “Jack kicks a ball into the
net” actually covers several time periods: [Jack’s foot
swings|— [Jack’s foot hits a ball]—[the ball flies]—[the ball
gets into the net]. Note that [Jack’s foot swings] and [Jack’s foot
hits a ball] are combined into [Jack kicks a ball], and [the ball
flies] is omitted. This taps into a schema network, which can
use stored knowledge to “unpack” items of SemRep when
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necessary. On the other hand, a Gricean convention (Grice,
1969) makes it unlikely that SemRep will include details that
can be retrieved in this way, or details that are already known
to speaker and hearer.

The same principle is applied to the topology of SemRep
entities. The arrangement of conceptual entities and their
connections might or might not follow that of the actual
images and objects. A description “a man without an arm”, for
example, does not exactly match an actual object setting since
it encodes the conceptual entity of an arm which is missing in
the actual image. Here one may need to include what is not in
the image to block standard inferences where they are
inappropriate. This is akin the notion of inheritance in
semantic networks.

Building a SemRep may require multiple fixations of the
same region, both to accumulate descriptors for the region
and to extract “relations” between this and other regions. If
either fixation shown in Fig. 2(1) were made first, the only
information associated with it might be “house”. But once we
have seen both, we may want to distinguish them. This may
require an alternation of fixations to settle on salient
characteristics such as color, and thus distinguish them by
the labels “house/red” and “house/blue”. In addition, or
instead, the alternating fixations might establish a spatial
relation between them as in Fig. 2(2). But note that once we
have all this information, we can use it in very different ways.
For example, we might ignore the color difference, and use the
spatial relation to speak of “the house on the left” rather than
“the red house”. Alternatively, we might want to describe the
subscene in Fig. 2(2) by saying “There’s a red house to the left
of a blue one” or “There’s a blue house to the right of the red
one”.

Moreover, in forming a description of part of the scene, the
whole SemRep may affect the expression of the part. Based on
the SemRep in Fig. 2(3), we might say “There’s a kid playing in
front of the house”. However, if our analysis of the scene had
already yielded the SemRep in Fig. 2(4), then in describing the

subscene in Fig. 2(3) we are obliged to specify which house is
involved, and (perhaps after refining the analysis of each
house, in the fashion described in discussing Fig 2(1)) say more
specifically “There’s a kid playing in front of the red house.”
In response to hearing “There’s a kid playing in front of the
house.” one might ask “Who’s the kid?” This might involve
retrieving the node [1] in Fig. 2(5) and then narrowing attention to [2]
— localizing the kid — and then to [3] - looking at his face to
recognize that it is “John”. (Note the important distinction
between “shifting attention” and “narrowing attention”.) The
language system could then answer the question in various ways:

“John.”, “The kid’s John.” “John is the kid”. “It’s John.” And
So on.

At this stage, node [3] might be dropped from the SemRep,
having served its role in face identification, but node [2] might
be maintained as part of the current SemRep and inherit the
label “John”. This might trigger further analysis of [1], shifting
attention to [4] in Fig. 2(6), perhaps on the basis of John’s
outstretched arm, to recognize the ball and to then link [2] and
[4] via action recognition (perhaps invoking the mirror
system), resulting in a graph that could be verbalized as
“John is hitting the ball.”

In verbalizing a given part of the SemRep, we may choose
how much we refine a node into subgraphs that it dominates,
e.g., tosay “Akid is playingin front of a house”, “John is hitting
the ball in front of the red house”, “John is playing in front of
the house on the left”, “John is playing in front of one of the
houses”, etc. Of course, other fixations could yield extensions
of the SemRep that could be expressed with other sentences,
such as “John is near the tree” (perhaps in answer to the
question “Where’s John?” — an alternative answer, of course,
being “In front of the red house”.) Again, if we followed the arc
of the ball and saw Bill (not shown in the figures) we might
extend the sentence “John is hitting the ball” to “John is hitting
the ball to Bill” or “John is hitting Bill the ball.”

Fig. 2 - Different patterns of attention to a visual scene will highlight different regions of interest and relations between
them, defining a graph structure called SemRep. We stress that a given visual scene may support a large number of SemRep
graphs, and that a single SemRep may support many different sentences to describe those aspects of the scene which it represents.
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One more observation. The processing of schemas by
VISIONS includes the setting and updating of “confidence
levels”, indicating the weight of evidence for a specific schema
instance to interpret a given region, based on the state of
competition and cooperation within the network. Similarly, in
SemRep, each node is assigned a value representing “discourse
importance” — what the speaker wishes to emphasize for the
hearer. For instance, even if the vision system had specified
BOY first and this led to the zoomingin on the face, FACE might

/attribute/

“A pretty woman in blue hits a man.”

AT T

pretty woman woman blue

Fig. 3 - Top: A picture of a woman hitting a man (original
image from “Invisible Man Jangsu Choi”, Korean
Broadcasting System). Middle: A SemRep graph that could be
generated for the picture. This might yield the sentence “A
pretty woman in blue hits a man.” Bottom: A sentence “A
pretty woman in blue hits a man” and the corresponding
hierarchical construction structure that TCG can associate
with the SemRep (see Section 4 and Fig. 6 for details of the
production process).

be ranked higherin SemRep than BOY if the formeris currently
of greater interest. Again, the same scene may be described by
“John loves Mary” or “Mary is loved by John” depending on
whether the focus (higher significance value) is given to John or
Mary, respectively. The use of these weights is already
included in the design of our Template Construction Grammar,
but we will not discuss them further in this paper.

Consider the specific scene and SemRep shown in Fig. 3.
Here, agents and objects are represented as nodes, but we also
use nodes to represent attributes. Both nodes and relations
may be labeled with “conceptual structures”. The properties of
a recognized object are attached to the node for that instance
of the object, and the semantics of an action are attached to an
action relation. Some attached concepts will later be trans-
lated into words by the language system (Section 3). However,
the SemRep graph is not labeled with words but with more
abstract descriptors, allowing the same graph to be expressed
in multiple ways within a given language. Thus the concept
YOUNG FEMALE could be translated into “girl”, “woman” or
even “kid” and the action concept HITTING WITH HAND could
be translated into “hit”, “punch” or “slap”. Again, the config-
uration where object A is placed vertically higher than B can be
expressed as “A is above B”, “B is below A”, “A is on B”, etc.

The action concept HIT may involve properties such as
VIOLENT MOTION, BODY CONTACT, and CAUSING PAIN. How-
ever, some of these processes may be directly perceptual (i.e.,
generated directly by the visual system) while others may be
more inferential. It has been claimed (Gallese and Goldman, 1998)
that mirror neurons will link action recognition to our own
experience, so CAUSING PAIN mightbe perceived “directly”, while
the woman’s ANGER might either be perceived directly or be more
inferential.

With these analyses, we can provide a preliminary defini-
tion of SemRep — and we stress again that the same scene can
have many SemReps:

2.5. Definition

A SemRep for a scene consists of a graph —i.e.,aset Nof nodes,and a
subset E of Nx N of edges — where the set N of nodes is partitioned
into a set O of object nodes and a set A of attribute nodes:

i) Each object node n is linked to a spatial subregion r(n) of
the represented scene and is associated with a schema
which interprets that region.

ii) Each attribute node is linked to a single object node, and
is labeled by a concept which describe a “parameter range”
for the schema associated with the object node (e.g,
attributes associated with a node representing a person
named John might be “smiling” or “tall”).

iii) Each edge between object nodes is labeled by a
“relation” (which could be a spatial relation, an action, a
dominance (is-part-of) relation, or some other relation)
which applies to the nodes as currently labeled.

iv) Nodes in SemRep may also be given a significance value
which expresses the importance of a particular aspect of
the scene.

Thus we view SemRep as providing a graphical structure
which encompasses one analysis which captures a subset of
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the agents, objects, actions and relationships that may be
present in a given (temporally extended) visual scene.

Thus a spatial relation between nodes m and n actually
refers to the regions r(m) and r(n) that they occupy. The
subtlety is that we may use the same word to indicate spatial
relations within the 2-D plane of the image, or the 3-D world
that the image represents.

The is-part-of relation is also a spatial relation, but is
distinct from those “normal” spatial relations between disjoint
objects or regions in the scene. In this case we have r(m) Cr(n),
but possibly with some further semantic description. A
relation includes the sets it relates and so a verb is not just a
label for an action but incorporates restrictions on its slot
fillers. This fits in with the observation in schema theory thata
perceptual schema may return not only the category of the
object but also parameters relevant for interaction with the
object — and we might now add, post mirror neurons, relevant
for recognizing actions in which the object is engaged.

3. Template construction grammar (TCG)

How should linguistics treat idiomatic expressions like kick the
bucket, shoot the breeze, take the bull by the horns or climb the wall?
Rather than taking their meanings as a supplement to general
rules of the grammar, Fillmore et al. (1988) suggested that the
tools they used in analyzing idioms could form the basis for
construction grammar as a new model of grammatical organiza-
tion, with constructions ranging from lexical items to idioms

to rules of quite general applicability (Croft and Cruse, 2005).
Here, constructions are form-meaning pairings which serve as
basic building blocks for grammatical structure — each
providing a detailed account of the pairing of a particular
syntactic pattern with a particular semantic pattern. Con-
structions, like items in the lexicon, thus combine syntactic,
semantic and even in some cases phonological information.

We are currently implementing a parsing for our own version
of construction grammar, Template Construction Grammar
(TCG), and have clear ideas on how to extend the work to
sentence comprehension (Section 5.3). In some sense, TCG may
be seen as a variant of Fluid Construction Grammar (FCG; De
Beule and Steels, 2005) with the distinction that TCG grounds its
approach to language by using SemRep as the format for its
semantics, whereas FCG adopts predicate structure for repre-
senting constructions and their (syntactic and semantic) con-
straints. Moreover, FCG uses logical deduction as the basis for
processes of comprehension and production. Another approach
which, like TCG and FCG, seeks to place Construction Grammar
in a computational framework related to an agent’s interaction
with the external world is Embodied Construction Grammar
(Bergen and Chang, 2005) but no active development of ECG
seems to have occurred since 2003, whereas work on FCG
continues at an impressive pace. Section 5.1 offers further
comparisons of TCG with ECG and FCG.

TCG adopts two major policies of conventional construc-
tion grammar (CG): each construction specifies the mapping
between form and meaning, and the systematic combination
of constructions yields the whole grammatical structure.

/animate/

Lex-Seq hit

{ \ '8 \ { 3\
name: MAN name: WOMAN name: DRESS
class: NOUN class: NOUN class: NOUN
template: template: template:

Sem-Frame Sem-Frame Sem-Frame

Lex-Seq Lex-Seq Lex-Seq

man woman dress

\ J \ J \ J
s R 4 '
name: HIT name: WEAR
class: VERB class: VERB
template: template:

Sem-Frame Sem-Frame

Iwear/

/animate/

Lex-Seq

wear
o J o v,
{ 3 '8 3\
name: BLUE name: PRETTY
class: ADJ class: ADJ
template: template:
Sem-Frame Sem-Frame
Lex-Seq Lex-Seq
blue pretty
\_ J | J

Fig. 4 - Examples of constructions that correspond to elements in the lexicon.
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However, in TCG, the meaning of an utterance is given as a
SemRep graph (with suitable extensions to be provided in
further work). A SemRep may yield one or more sentences as
TCG finds ways to “cover” the relevant portion of the given
SemRep with a set of “small” subgraphs, where each is chosen
such that a construction is available which expresses that
subgraph in the given language. In production mode, the
template acts to match constraints for selecting proper
constructions by being superimposed on the SemRep graph.
The semantic constraint of each construction is considered to
be encoded in the template since the template specifies
concepts as well as the topology of a SemRep graph. In
comprehension mode, the template provides a frame where
the interpreted meaning builds up as parsing progresses. The
details of the interpreted SemRep graph are filled with the
meaning of the constructions found by matching with the
currently processed text (or word) one by one. In the present
version of SemRep, we ignore the specification of phonological
structure, and ground processing in the deployment of
constructions which specify lexical entries of the kind
shown in Fig. 4. These constructions show how to associate
a word with a particular node. The word shown below the
node in each construction in the Lex-Seq section is an actual
word of the language (in this case, English). However, what
looks like a word inside the node in each construction is
actually a “concept-label” which indicates a concept for which

the associated word may, but need not be, associated. For
example, the concept /frock/ could be associated with the
word DRESS, and could also be associated with more general
words like CLOTHING. The best way to design constructions to
handle such many-to-many relations between word and
concept is still under investigation.

We should also note that the types here are standard syntactic
categories like NOUN, ADJ (adjective) and VERB. More generally,
though, the types may be semantic categories, and these may be
either rather general, or may be specific to just a few construc-
tions. Indeed, although we do not use this option in this paper, the
type value may actually be a set of actual types, so that the result
of applying the construction may fill any slot in any construction
for which one of those types is specified. Fig. 5 provides examples
of higher-level constructions in which there are slots whose types
must be specified. With these examples before us, we can give the
following general definition:

3.1. Definition

A construction is defined by a triple (name, class, template)
where:
Name is the name of the construction. It is not involved in
the language process - it is only for a reference purpose.
Class specifies the type (e.g., syntactic category) of the
result of applying the construction. It determines for which

" ™ ' ™
name: SVO name: REL_SVO
class: S class: S
template: template:

Sem-Frame Sem-Frame

@ Jaction/ @ @ Jaction/ @
Lex-Seq Lex-Seq
VP NP NP who VP NP

\ — — — J \ — — — J
4 ™ 4 ™\
name: ADJ_N name: VERB_3
class: NOUN class: VP
template: template:

Sem-Frame Sem-Frame "

[attribute/ Jaction/
Lex-Seq
ADJ NOUN

o S A »,
( N 3 ™)
name: DET_A name: IN_DRESS
class: NP class: NP
template: template:

Sem-Frame Sem-Frame

» Iwear! fattribute/
Isingular/
object/
Lex-Se Lex-S
! a NOUN . NP in ADJ

\ J N —~

Fig. 5 - Higher-level constructions used to encode grammatical information. Each construction is a SemRep-like graph with
either generic or specific labels on the edges and nodes, with each linked to a text or an empty slot. For each slot there

may be restrictions as to what can serve as slot fillers.
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other constructions the result of applying this construction
could serve as an input.

The template defines the form-meaning pair of a construc-
tion and has two components:

- Sem-Frame (SemRep frame) defines the meaning part of the
construction. It is a part of a SemRep graph that the
construction will ‘cover’ as for its meaning. Each element of
this graph is attached with a concept and an activation
value as is a typical SemRep graph element. Added to that,
Sem-Frame also specifies the ‘head’ element which acts as
a representative element of the whole construction when
forming hierarchy with other constructions.

Lex-Seq (lexical sequence) defines the form part of the
construction. It is a string of words, morphemes or empty

slots. Each slot can be filled with the output of other
constructions. Each empty slot specifies the class of a
construction that will fill it and the link to the element of
Sem-Frame connected to the slot. Only constructions of the
same class whose head element is the same as the linked
one can be filled in.

Although activation value is not considered here, it can be
important in determining the sentence structure, e.g., whether an
active or passive sentence is used to describe a scene. For some
constructions, such as SVO or REL_SVO, it is assumed that the
activation value for the node corresponding to the agent of an
action is higher than that of the patient node and this would lead
to produce an active voice. Furthermore, construction VERB_3 is
an example of the negation of attributes. Only a single third object

(1)

Ihit/ Iwear/

/attribute! lattrioute/

(2)

MAN HIT WOMAN  WEAR DRESS

fattribute/ lattribute/

PRETTY BLUE

DETA VERB3 DETA yppg 3 DETA
1
st Wr  WOMAN p.p  ORESS

DET_A  VERB_3 VERB_3

SVO

/attribute/ IN_DRESS

: ADJ_N
ADJ_N fattributel
DET_A DET_A
1 I
ADJN ADJ_N
P N
PRETTY WOMAN BLUE DRESS
& )
- :
s;.ro DET.A  VERB_3 VERB_3 i
REL_SVO

IN_DRESS

DET_A DET A

| |
ADJ_N ADJ_N
AN N
PRETTY WOMAN BLUE DRESS

Fig. 6 — Stages in generating a sentence by finding constructions to hierarchically cover a SemRep. Stages (1) through (6). Stages
in generating a sentence by finding constructions to hierarchically cover a SemRep. Stages (7) through (12).
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' s ™)
SVO VS SVO Vo
REL_SVO = ;
Ihiv Iwear! = P hit/ N Awear/
it \ IN_DRESS
- DET_A L / \ Z vs
| DET_A
fattribute/ Jattribute/ ADJ_N Jattribute/ 1
£ N ADJ_N
BLUE DRESS zZ N
BLUE DRESS
- |8 J
( ( 3
DET_A VERB_3
- | |
svo IN_DRESS MAN i SVO IN_DRESS
PRETTY WOMAN
- \ /
's (7 3
SVO
(11) . ~ (12)
VERB_3 DET_A
| |
HIT MAN
i
IN_DRESS
N\
DET_A BLUE
ADJ_N ADJ_N
/N L%
| prery woman || PRETTY WOMAN )

Fig. 6 (continued).

is eligible for the conjugation specified in the construction and
this grammatical constraint is set by adding negation attributes.

As mentioned above, the template is an (abstract) fragment of
a SemRep graph. The matching process in production mode is
done by comparing the template of a construction to the given
SemRep graph. The contents (given as the attached concepts) of
nodes and relations and the connective structure of nodes and
relations are considered in the process. The construction with the
most “similar” template will be chosen over other constructions,
though provision must be made for backtracking. Note, too, that
the similarity might relate to a subgraph bottom up or a set of
high-level nodes top-down — choices compete and cooperate till
a spanning structure is formed. “Similarity” for the attached
concepts is decided, for example, by how many common
attributes they share — SemRep includes (though we have
omitted the details from this paper) the ability to capture concepts
by the superimposed distributed representation of attributes. For

example, the IN_DRESS construction (Fig. 5) can cover /woman/-/
dress/-/blue/ in Fig. 3 even though IN_DRESS does not specifically
involve /womarn/, /dress/ or /blue/ inside its definition, but only
general components such as /human/ or /color/. Note that a
concept /human/ is used as a categorical constraint in this case.
This allows the system to have great flexibility in producing sen-
tences. A number of constructions with any appropriate concepts
available at that moment (e.g. for /human/ concept, /animal/,
/mammal/ and /animate object/ are all appropriate) can be
selected as candidates.

4. A detailed example: From SemRep to sentence

We now return to the scene and SemRep of Fig. 3, and show (in
Fig. 6) the stages of processing the SemRep to yield a
description of the scene. In what follows, we assume that
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the vision system has assigned greatest interest to /woman/
with /man/ next and /blue/ third. /pretty/ and /frock/ would be
of about the same importance. Such “top-down” weighting of
nodes corresponds to the notion of “focus”. Thus if we were
looking only at the SemRep for /man/-/hit/-/woman/, focusing
on (giving greater weight to) /woman/ would invoke the active
construction to yield “A woman hit a man”, whereas a focus on
man would invoke the passive construction to yield “A man
was hit by a woman.”

The SemRep is reproduced in Fig. 6(1). In Fig. 6(2), we see
the result of applying lexical constructions (recall Fig. 4) to
each node and edge as the first step. These not only label
words and edges with words, but also assign a category along
with the word. The basic class (ADJ, NOUN, VERB) construc-
tions (e.g. for the words DRESS, WEAR, PRETTY, etc.) are
evoked first. More complex ones, such as SVO, cannot be
evoked at this stage because they have slots to be filled and the
components on the SemRep graph have not yet been specified
in a way that lets them meet the criteria for filling these slots.
At each stage, evoked constructions will be tested against each
other with the survivors “attached” to the SemRep graph. In
Fig. 6, most panels show “winners” at each round , but Figs. 6
(5), (7), (8), and (9) are in fact intermediate steps to clarify the
internal mechanism. In general the SemRep will accumulate
alternative constructions with varying “confidence levels”
which may rise and fall through successive rounds of
competition and cooperation until the final linguistic form is
settled upon. Recall that labels like /frock/ on a node and /wear/
on an edge of the graph are not words. Instead they denote
concepts which, in the final sentence, may or may not be
indicated with the word X used in the concept-label /x/. Thus,
constructions for the words DRESS, CLOTHING, OUTFIT and
FROCK may compete for the /frock/ node and Fig. 6(2) shows the
/frock/ node decorated with the word DRESS.

Once all the nodes and relations are initially “covered”,
ADJ_N constructions are evoked to yield Fig. 6(3), embracing
the previously evoked (and attached) NOUN and ADJ class
constructions. (Of course, there is no need in general for all
these constructions to be invoked at the same stage.) Note that
the previously evoked NOUN and AD]J class constructions (e.g.
WOMAN, DRESS or BLUE, etc.) are not competing with AD] N
constructions even though their covering regions are over-
lapping. This is because ADJ N class constructions have
empty slots for ADJ and NOUN class constructions and they
can “fill into” the slots (cooperation). DET_A constructions are
evoked as well. In this case, again, they don’t compete with
(the combined) ADJ_N constructions since DET_A construc-
tions have slots for NOUN class constructions and ADJ N
constructions are of NOUN class, and thus can fill slots in
DET_A constructions. We thus see DET_A alone applied to /man/
since it has no linked attributes, whereas we have the hier-
archical application (shown in blue in Fig. 6(3)) which yields local
parse trees in Fig. 6(4)) applying the ADJ N and DET-A
constructions to both /woman/ and /frock/.

Fig. 6(5) shows what happens as the TCG production
process begins to evoke more complex constructions with
more slots (note that other constructions are hidden for clarity
here - Fig. 6(6) shows the full set). /man/-/hit/-/woman/ will
evoke the SVO construction (blue) and /woman/-/frock/-/blue/
will evoke the IN_DRESS (purple) construction. Interestingly,

however, /woman/-/wear/-/frock/ will evoke SVO and
REL_SVO (brown) at the same time. According to the con-
struction set, /man/-/hit/-/woman/ could also evoke REL_SVO,
but we do not show it here since the REL_SVO construction is
not evoked with a strong enough confidence level to remain
above threshold in the competition with the SVO construction
to cover /man/-/hit/-/woman/. Note that the processes
demonstrated in Fig. 6(5) through Fig. 6(10) are shown as
serial in this exposition, but would actually run in parallel.

Since the SVO for /man/-/hit/-/woman/ (blue) and the SVO
for /woman/-/wear/-/frock/ (brown) overlap on the /woman/
node, they will compete (Fig. 6(7) — all other constructions are
hidden for clarity). (An alternative is that these two construc-
tions will survive in generating a scene description with at
least 2 sentences, but we will not pursue this alternative in the
present example.) Meanwhile, the REL_SVO (brown) and
DET_A (red) constructions will compete since they are all NP
class constructions covering the same node, /frock/.

Fig. 6(8) shows the situation after SVO for /man/-/hit/-/
woman/ (blue) wins over SVO for /woman/-/wear/-/dress/
(green) because /man/-/hit/-/woman/ is more active than /
woman/-/wear/-/dress/ in the SemRep graph, resulting in the
higher similarity value for the former SVO construction.
DET_A wins over REL_SVO for the same reason, higher
similarity. But note that in this case, cooperation plays a role
— the combined constructions (e.g. ADJ_N, BLUE, DRESS) have
lent a hand to DET_A.

REL_SVO's similarity
= similarity values of WOMAN construction + WEAR
+ DRESS.

DET_A’s similarity = similarity values of DRESS+BLUE + ADJ_N

In each case, the higher-level construction’s similarity is
the sum of that for all of its lower level constructions. It applies
not only to the attached constructions but also for the newly
evoked ones: When entering into competition, similarity
scores for the evoked and previously attached constructions
are calculated based on the assumption that the slots are all
filled in. So REL_SVO is not attached here yet and only DET_A
is attached. But since REL_SVO is evoked, there must be
appropriate constructions that could fill into REL_SVO at that
moment - the similarity has to be calculated as the sum of all
component constructions in the hierarchy structure. In fact, if
the node /frock/ or /wear/ had been sufficiently stronger
relative to /blue/, then REL_SVO would have been the winner,
yielding a sentence structure something like “A woman who
wears a blue dress...”, but here we assume that /blue/ node is
more focused on (more ‘salient’ in the vision term).

To understand what happens next, we need to look at the
IN_DRESS construction in Fig. 5 which is a particular application
of a more general IN_CLOTHING construction which represents
the fact that in English, we may replace “the person who is
wearing a blue item of clothing” by “the person in blue” (and
similarly for any other color). Fig. 6(9) shows the case in which
DET _A loses outin competition with the IN_DRESS construction
since they overlap at /frock/-/attribute/-/blue/, their classes are
all NP, and the color is more relevant than the nature of the
woman’s clothing. (All other constructions are hidden for
clarity.) Other constructions previously attached in the region,
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such as DRESS (previously connected to DET_A) and WEAR
would compete with IN_DRESS (note that IN_DRESS has no slot
for NOUN or VERB types) will die out as well. Only BLUE survives
to fill the COLOR slot in IN_DRESS. Fig. 6(10) shows all
constructions attached to the SemRep so far. The winner SVO
construction now embraces the attached constructions in its
region (shaded in blue in Fig. 6(11)), building a hierarchical
structure (but note that one slot is still left to be filled). IN_DRESS
also embraces the attached constructions and builds a hier-
archical structure. Fig. 6(12) shows the final construction
hierarchy resulting from the production process. IN_DRESS is
used as a filler in SVO, forming a unified structure. Note that
even though, Fig. 6(11) and Fig. 6(12) are shown as separate
steps, their processing is done simultaneously in the parallel
implementation, so the unfinished SVO structure in Fig. 6(11) is
not meaningful. Finally, a simple tree traversal on the tree of Fig.
6(12) yields the sentence “A pretty woman in blue hits a man.”

As we see, the whole output sentence structure can be very
sensitive to a subtle change in activation values of edges or
nodes of the SemRep graph. As a result, sentence structure is
decided in a flexible manner. The hierarchical structure
underlying the sentence is, thus, mainly decided by the
production process and does not need to be explicitly encoded
in SemRep.

5. Discussion

This concluding Discussion has 3 parts: First, we offer new
insight into Template Construction Grammar (TCG) by com-
paring it with other models of CG, specifically Embodied
Construction Grammar (ECG) and Fluid Construction Gram-
mar (FCG), with particular emphasis on the importance of
using SemRep for semantic representations in TCG. Second,
we offer some pointers to data on neural correlates of vision
and language processing relevant to future work in which we
will develop TCG within the context of neurolinguistics.
Finally, we show how the relation between SemRep and
TCG, which in the present paper has been set forth in the
context of language production, should serve well as the basis
for future work in language comprehension.

5.1. Comparison with other models of construction grammar

Template Construction Grammar (TCG) shares basic princi-
ples with other construction grammar approaches but is
explicitly designed to link the semantics of sentences to the
representation of visual scenes. However, the use of SemRep
involves a sufficiently general graphical structure that we are
confident of its extensibility to other meanings. In SemRep,
the semantics of an entity is reduced to a node or edge to
which is attached a concept while the semantics of a scene is
represented by the interactive connectivity between the
components of a SemRep graph. Each concept is associated
with a perceptual schema whose processing is claimed to be
instantiated in neural activities, even though the current work
implements cooperative computation through direct simula-
tion of schemas rather than through simulation of the brain’s
neural networks. The perceptual symbols approach (Barsalou,
1999; Barsalou et al., 2003) has some similarities in that it

emphasizes the use of sensory-motor representations by the
human cognitive system to ground perceptual symbols.
However, where Barsalou et al. set up a dichotomy between
states in modality-specific systems and redescriptions of
these states in amodal representational languages to repre-
sent knowledge, our schema theory places more emphasis on
multi-modal integration across sensory and motor systems.

Embodied Construction Grammar (ECG) (Bergen and
Chang, 2005) and Fluid Construction Grammar (FCG) (De
Beule and Steels, 2005) adopt a symbolic strategy for repre-
senting semantics. FCG works on logical predicate structures
that define semantic/thematic meanings as well as construct-
ing rules of constructions. Due to the nature of its approach,
FCG exhibits relatively complex and unintuitive representa-
tions with multiple structure types. Although ECG tries for an
embodied approach in language understanding by employing
X-schemas (Narayanan, 1997) — simulation processes similar
in what each represents to the motor schemas of our schema
theory - itis fundamentally symbolic. The semantic meanings
of constructions are defined by symbolic schemas with
variable pre-defined parameters that can be inherited from
and assigned to other schemas and constructions. Although
these parameters later act as inputs to the simulation by X-
schemas, the analytic process for construction manipulation
is done on the level of symbolic schemas, not X-schemas,
leaving the model symbolic.

Except for the simplicity of representation, another advan-
tage of the TCG approach is that the category of a concept can
be driven simply by assessing shared features among the
category’s members. For example, /grandmother/ and /Peter
Pan/ are all /human/ since they both share the common
features (or characteristics) of human beings. But only /Peter
Pan/ can be categorized as /male/ or /boy/. This makes the
semantic matching process in TCG more flexible. Since TCG
works on SemRep, the meaning part of the form-meaning
pairs of constructions in TCG is represented as a part of a
SemRep graph, and the semantic/thematic constraints of
argument structure constructions are represented as concepts
attached to nodes and relations. For a particular SemRep part
to be translated, a number of constructions of different
abstraction levels can possibly cover the part without requir-
ing categorical conversion of the concepts. The selected
constructions compete and would be selected according to
various constraints set at that moment, thus allowing multi-
ple sentences to be produced for a single SemRep. However, as
noted by Barsalou et al. (2003), this type of concept system
needs to have a strong “content-addressable” memory
mechanism that enables easy comparison between similar
components. ECG and FCG both show this flexibility to some
extent.

Moreover, only a single type of construction is defined in
TCG regardless of (syntactic or semantic) level since the
categorical information need not be explicitly defined inside
constructions and a simple matching process is employed. On
the other hand, FCG employs various types of constructions
that are basically defined as various types of rules. Each
defines an exact transformation process between verbal
expression and meaning, in order to capture the categorical
divergence in the semantic and syntactic hierarchy. ECG is
simpler than FCG in its format, but it also draws on different
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constructional types that are represented as inheritance
among schemas and constructions. As do the rules of FCG,
the inheritance strategy in ECG is proposed to define a
categorical hierarchy in the semantics and syntax of language.

By including empty slots in constructions and allowing
overlap among suitable constructions in the graph-covering
process, TCG is capable of handling relative clauses while FCG
employs its J-operator to handle hierarchy, whereas ECG does
not address this issue explicitly.

5.2. An assessment of neural correlates

Although the work on the SemRep/TCG framework reported
here has addressed the representation of cooperative compu-
tation of schemas without assessing their possible neural
correlates, a rapprochement with neurolinguistics provides
our long-term motivation. We thus devote this section to a
review of relevant neural data and our current thoughts on
how to make use of it.

The competition/cooperation between constructions to
generate a hierarchical sentence structure by slot filling may
be done in the prefrontal region including Broca’s area and
Brodmann’s areas 46/9 since the processing requires a fairly
large working memory structure (keeping track of the results
of applying multiple constructions) and abstract sequence
manipulation ability - reminiscent of Ullman’s (2004) char-
acterization of the role of procedural and declarative memory
in language processing. The modeling by Dominey and Hoen
(2006) which provides a neural model of the basal ganglia and
its environs which relates a stripped-down version of Con-
struction Grammar to sequence processing. Kemmerer (2006)
uses the framework of Construction Grammar to present the
major semantic properties of action verbs and argument
structure constructions. He further analyzes neuroanatomical
substrates of action verbs and argument structure construc-
tions to argue that the linguistic representation of action is
grounded in the mirror neuron system.

Given that a construction defined in TCG is basically a
form-meaning pair, it is possible that constructions are
distributed throughout the brain, especially centered around
the perisylvian regions. These regions, which include classical
Broca’s (BA 45/44) and Wernicke’s (BA 22) areas and the left
superior areas of temporal lobe, have long been associated
with language processing (Arbib and Bota, 2003; Broca, 1861;
Kaan and Swaab, 2002; Wernicke, 1874). Pulvermiiller (2001)
asserts that a “functional web” linking phonological informa-
tion related to the articulatory and acoustic pattern of a word
form is developed around the perisylvian area since the
cortical areas controlling face and articulator movements
(the inferior motor cortex and adjacent inferior prefrontal
areas) and the auditory system (areas around the superior
temporal lobe) might develop strong correlation through
direct projection pathways between these two areas (e.g.
arcuate fasciculus) from the early babbling phase with
stimulation by the self-produced language sounds. Pulver-
miller also suggests that “word webs” represent words and
aspects of their meaning and include neural circuits in the
perisylvian areas storing “word form information” as well as
circuits in more wide spread cortical areas for processing
related perception and action information, “word meaning

information”. We may see here another perspective on the
relations between “the mirror system for words-as-phonolo-
gical-objects”, “the mirror system for actions” and the network
of perceptual and motor schemas shown in Fig. 1.

It has been argued that such semantic representations are
topographically distributed across brain areas associated with
the process of corresponding categorical properties — con-
cepts of animals are mostly associated with the temporal
areas where visual properties are stored whereas concepts of
tools or actions are correlated to the motor and parietal areas,
generally involved in action and tool use (Chao and Martin,
2000; Martin et al., 1996). The neural association of category-
specific concept knowledge, especially in the left hemisphere
around the perisylvian areas, is addressed by other studies
(Damasio et al., 1996; Martin et al., 1996; Tranel et al., 2003)
associated mostly with concrete words, as in the lexicon
constructions in TCG (Fig. 4). Pulvermiiller et al. (2005) claim
that left cortical areas for language and action are linked to
each other in a category-specific manner, but one must be
careful to distinguish semantic representations from phono-
logical representations and to note that constructions like
those of Fig. 5 must assemble words of diverse categories
whatever the relative localization of their semantics. Kuper-
berg et al. (2000) reported that the left-inferior-temporal and
fusiform gyri are activated during processing of pragmatic,
semantic and syntactic linguistic information. They suggest
that this region is responsible for constructing higher repre-
sentation of sentence meaning. Moreover, the involvement of
the perirhinal cortex in object identification and its represen-
tation formation integrates not only visual but also multi-
modal attributes (e.g. smell or texture) (Murray and Richmond,
2001). Also, the perirhinal cortex is suggested to be responsible
for the relatively long-term memorization of such representa-
tions (Buffalo et al., 1998).

The main operational theme of TCG is the selection of
constructions by competition and cooperation and building
the hierarchical sentence structure by slot filling among those
selected constructions. It is hypothesized that Broca’s area is
mainly involved in this operation in that it is in most part the
syntactic manipulation of constructions which is supported
by the matching process of construction semantics - i.e.
matching semantic meanings/categorical information of con-
struction for deciding winners and arranging them in a certain
order. In fact, Broca’s area is activated more when handling
sentences of complex syntactic structure than of simple
structure (Stromswold et al., 1996). It has been further
hypothesized that BA 44 of Broca’s area is for handling the
arrangement of lexical items whereas BA 45 is for retrieving
semantic or linguistic components during the matching and
ordering process. Note that since the manipulation of the
orderly arrangement of phonetic components (both in verbal
and sign language) is fundamentally the same as the
manipulation of lexical items, BA 44 is assigned the role of
processing the lexical sequence (Lex-Seq) of constructions in
TCG, which is the unified representation of slots and
phonemes together.

Horwitz et al. (2003) conducted a PET study which showed
that BA 45, not BA 44, is activated by both speech and signing
during the production of language narratives done by bilingual
subjects, whereas BA 44, but not BA 45, is activated by the
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generation of complex articulatory movements of oral/laryn-
geal or limb musculature. Indeed, it should not be a
coincidence that the left-inferior prefrontal regions are a
crucial component of the proposed phonological rehearsal
circuit (Aboitiz and Garcia, 1997; Smith et al., 1998). Moreover,
Corina et al. (1999) reported the selective participation of BA 44
in phonetic aspects of linguistic expressions.

5.3. Working memory

A large amount of working memory is required to support the
operations mentioned above, both working memory for
construction of a visual episode and the associated SemRep,
and the working memory for the words and constructions
involved in the description of the scene. Working memory for
the visual scene may be in the right parieto-occipital area,
since patients with lesions in this region have (dorsal)
simultanagnosia — they can recognize objects, but cannot
see more than one object at a time (Coslett and Saffran, 1991;
Michel and Henaff, 2004). Smith et al. (1998) proposed that the
storage buffer for verbal working memory roughly corre-
sponds to the left posterior parietal cortex (BA 40) and its
connection to the left prefrontal cortex while the executive
component for processing the contents of working memory
lies in the left dorsolateral prefrontal cortex (DLPFC; BA 9/46).
Similarly, monkey prefrontal cortex is involved in sustaining
memory for object identity and location (Rainer et al., 1998)
and the processes for the object spatial location and the object
characteristics are segregated in different regions — the
posterior parietal cortex connected to the DLPFC and the
connections of the inferior temporal lobe and the inferior
convexity of the prefrontal cortex, respectively (Wilson et al.,
1993). Aboitiz et al. (Aboitiz and Garcia, 1997; Aboitiz et al.,
2006a,b) claim that the projection of phonological representa-
tions created in Wernicke’s area through the inferoparietal
areas to Broca’s area forms a phonological rehearsal device as
well as a working memory circuit for complex syntactic verbal
processes. Arbib and Bota (2006) — especially their Fig. 5.7 -
compare this approach with the Mirror System Hypothesis.

5.4. Comprehension

Although only production is addressed in this paper, a similar
mechanism based on the competition and cooperation frame-
work can be used for comprehension in TCG. In this case, the
same set of constructions can be used as well, only with the
application direction reversed. FCG also uses the same set of
rules and constructions in both directions. However this very
flexibility in computational terms fails to address a well-known
psycholinguistic fact — that we are often capable of under-
standing sentences even when we have not mastered the
constructions needed to generate them. The resolution of this
(whose details lie outside the scope of the present paper) is that
we engage a cooperative computation paradigm for perception
which does not lie wholly within the linguistic domain. The
parsing process may deliver fragments of a SemRep which is
incompletely integrated, but then the processes which link
SemRep to the schema instantiation processes of visual scene
perception can repair the defective SemRep to yield a plausible
scene representation. In VISIONS, the schema instance level

may invoke the intermediate database to in turn invoke further
processing to return answers needed to assist the competition
and cooperation between schema instances, so we must
understand that SemRep is not an isolated graphical represen-
tation but is instead linked to the schema instance level though
giving only a partial view of it. Each node is linked to a region of
the image either via the schema instance for that region (e.g., for
an object) or to parameters describing that region (as when an
attribute is linked to a node corresponding to that region) or to
the linkage between regions related to agents or objects (as in
the case of actions or spatial relations) which may encompass a
somewhat larger region. In the same fashion, we note that the
linkage of a SemRep to a Schema Instance Map allows the
SemRep to be expanded or adjusted as the demands of narration
require. This is true in the case of finding information which
serves to disambiguate a description, as well as in answering a
question about a scene.

Of course, this does not guarantee that the SemRep is
“correct” for the given sentence. Such an interplay of linguistic
and cognitive processing has been invoked in the study of
aphasia. Indeed, Pifhango (2006) stresses that comprehension
can take place despite syntactic impairment, but only if the
sentence’s semantic structure is rich enough. She relates this to the
syntax-independent semantic combinatorial mechanisms of
Culicover and Jackendoff (2005), but we would suggest that our
SemRep/TCG framework, by employing cooperative computa-
tion of schemas, has more promise for a rapprochement with
neurolinguistics.

The TCG formalism exploits the combination of attributes
or properties for the concept attached to a node or edge in a
SemRep graph to compare conceptual entities. During produc-
tion of sentences, a given graph is compared with a number of
constructions for similarity. Only the winner is to be chosen to
produce sentences. On the other hand, in comprehension
mode, a textual form activates constructions by an inverse
matching mechanism. In this case, the form, not the template,
is what is being compared against the input. When proper
constructions are chosen, a new SemRep graph would be built
from the templates of the constructions. When multiple
constructions are to be combined into a single node or
relation, the attributes of the concept of that entity will be
added up, getting more specific. In this way, the transforma-
tion between different kind of hierarchical structures (back
and forth between SemRep and sentence structure) can be
executed.

The VISIONS system provided our motivating example of
how to build a system in which competition and cooperation
between schema instances can generate an interpretation of a
static visual scene. The HEARSAY speech understanding
system (Erman et al., 1980) provides a cooperative computa-
tion view of sentence parsing/interpretation which operates in
the time domain, proceeding from the spectrogram for a
spoken sentence to a possible syntactic analysis and semantic
interpretation of the utterance. Entities at different levels —
phonemes, words, phrases and sentences — compete and
cooperate to cover certain time periods of the auditory input in
a consistent fashion. But in the end, what emerges is a single
coherent symbolic representation of the syntax and semantics
of the most plausible interpretation of the auditory input.
HEARSAY was implemented on a serial computer, and the
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designers thus had to put much effort into the design of
algorithms for the serial scheduling of “knowledge sources”,
each of which corresponds, in our terminology, to the
application of one from a group of related schemas. Arbib
and Caplan (1979) discussed how this serial architecture might
be converted into a “neuro-HEARSAY” based on the competi-
tion and cooperation of schemas in the brain (see also Arbib
etal., 1987). This neuro-HEARSAY provided one inspiration for
the present work, and future work must move beyond it in
developing neural models of the interaction of SemRep and
TCG in the process of providing the semantics (SemRep) of a
given utterance (sequence of words).
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