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Abstract. The general setting for our work is to locate language perception and 
production within the broader context of brain mechanisms for action and 
perception in general, modeling brain function in terms of the competition and 
cooperation of schemas. Particular emphasis is placed on mirror neurons – 
neurons active both for execution of a certain class of actions and for 
recognition of a (possibly broader) class of similar actions. We build on the 
early VISIONS model of schema-based computer analysis of static scenes to 
present SemRep, a graphical representation of dynamic visual scenes designed 
to support the generation of varied descriptions of episodes. Mechanisms for 
parsing and production of sentences are currently being implemented within 
Template Construction Grammar (TCG), a new form of construction grammar 
distinguished by its use of SemRep to express semantics. 
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1. Introduction 

The present section provides the background for the novel material of this paper: 
Section 2, which presents SemRep, a graphical representation of dynamic visual 
scenes designed to support the generation of varied descriptions of episodes; and 
Section 3, which presents Template Construction Grammar (TCG), the version of 
construction grammar in which we locate our current efforts to implement 
mechanisms for the parsing and production of sentences. We also summarize the 
Mirror System Hypothesis, an evolutionary framework for analyzing brain 
mechanisms of language perception and production which places particular emphasis 
on the role of mirror neurons. We briefly note that the brain may be modeled in terms 
of the competition and cooperation of schemas. Finally, we recall key features of the 
early VISIONS model of schema-based computer analysis of static scenes to provide 
background for the design of SemRep. 



1.1 Schemas Which Compete and Cooperate 

Vision is often seen as a process that classifies visual input, e.g., recognizing faces 
from photographs, or segmenting a scene and labeling the regions, or detecting 
characteristic patterns of motion in a videoclip. However, our approach to vision is 
concerned with its relevance to the ongoing behavior of an embodied agent be it frog, 
rat, monkey, human or robot [1, 2] – we view vision under the general rubric of 
action-oriented perception, as the “active organism” seeks from the world the 
information it needs to pursue its chosen course of action. A perceptual schema not 
only determines whether a given "domain of interaction" (an action-oriented 
generalization of the notion of object) is present in the environment but can also 
provide parameters concerning the current relationship of the organism with that 
domain. Motor schemas provide the control systems which can be coordinated to 
effect the wide variety of movement. 

A coordinated control program is a schema assemblage which processes input via 
perceptual schemas and delivers its output via motor schemas, interweaving the 
activations of these schemas in accordance with the current task and sensory 
environment to mediate more complex behaviors [3]. A given action may be invoked 
in a wide variety of circumstances; a given perception may precede many courses of 
action. There is no one grand "apple schema" which links all "apple perception 
strategies" to "every action that involves an apple". Moreover, in the schema-theoretic 
approach, "apple perception" is not mere categorization − "this is an apple" − but may 
provide access to a range of parameters relevant to interaction with the apple at hand. 

1.2 The VISIONS System 

An early example of schema-based interpretation for visual scene analysis in the 
VISIONS system [4]. However, it is not an action-oriented system, but rather deploys 
a set of perceptual schemas to label objects in a static visual scene. In VISIONS, there 
is no extraction of gist – rather, the gist is prespecified so that only those schemas are 
deployed relevant to recognizing a certain kind of scene (e.g., an outdoor scene with 
houses, trees, lawn, etc.). Low-level processes take an image of such an outdoor 
visual scene and extract and builds a representation in the intermediate database − 
including contours and surfaces tagged with features such as color, texture, shape, 
size and location. An important point is that the segmentation of the scene in the 
intermediate database is based not only on bottom-up input (data-driven) but also on 
top-down hypotheses (e.g., that a large region may correspond to two objects, and 
thus should be resegmented). 

VISIONS applies perceptual schemas across the whole intermediate representation 
to form confidence values for the presence of objects like houses, walls and trees. The 
schemas are stored in LTM (long-term memory), while the state of interpretation of 
the particular scene unfolds in STM (short-term or working memory) as a network of 
schema instances which link parameterized copies of schemas to specific portions of 
the image to represent aspects of the scene of continuing relevance. 

Interpretation of a novel scene starts with the data-driven instantiation of several 
schemas (e.g., a certain range of color and texture might cue an instance of the foliage 



schema for a certain region of the image). When a schema instance is activated, it is 
linked with an associated area of the image and an associated set of local variables. 
Each schema instance in STM has an associated confidence level which changes on 
the basis of interactions with other units in STM. The STM network makes context 
explicit: each object represents a context for further processing. Thus, once several 
schema instances are active, they may instantiate others in a “hypothesis-driven” way 
(e.g., recognizing what appears to be a roof will activate an instance of the house 
schema to seek confirming evidence in the region below that of the putative roof). 
Ensuing computation is based on the competition and cooperation of concurrently 
active schema instances. Once a number of schema instances have been activated, the 
schema network is invoked to formulate hypotheses, set goals, and then iterate the 
process of adjusting the activity level of schemas linked to the image until a coherent 
interpretation of (part of) the scene is obtained. VISIONS uses activation values so 
that schema instances may compete and cooperate to determine which ones enter into 
the equilibrium schema analysis of a visual scene. (The HEARSAY speech 
understanding system [5] extends this into the time domain. In HEARSAY, entities at 
different levels – phonemes, words, phrases and sentences compete and cooperate to 
cover certain time periods of the auditory input in a consistent fashion. But in the end, 
what emerges is that single coherent symbolic representation.) Cooperation yields a 
pattern of "strengthened alliances" between mutually consistent schema instances that 
allows them to achieve high activity levels to constitute the overall solution of a 
problem. As a result of competition, instances which do not meet the evolving 
consensus lose activity, and thus are not part of this solution (though their continuing 
subthreshold activity may well affect later behavior). Successful instances of 
perceptual schemas become part of the current short-term model of the environment. 

The classic VISIONS system had only a small number of schemas at its disposal, 
and so could afford to be lax about scheduling their application. However, for visual 
systems operating in a complex world, many schemas are potentially applicable, and 
many features of the environment are interpretable. In this case, “attention” – the 
scheduling of resources to process specific parts of the image in particular ways – 
becomes crucial. How this may be accomplished is described elsewhere [6], as is the 
way in which VISIONS may be extended to mediate action-oriented perception by an 
agent in continuous interaction with its environment [2]. 

1.3 From Visual Control of Grasping to Mirror Neurons 

The minimal neuroanatomy of the brain of the macaque monkey and the human (or of 
mammals generally) that we need here is that the cerebral cortex can be divided into 
four lobes: the occipital lobe at the back (which includes primary visual cortex); the 
parietal lobe (moving up and forward from the occipital lobe); the frontal lobe and 
then moving back beneath frontal and parietal cortex, the temporal lobe. Prefrontal 
cortex is at the front of the frontal lobe, not in front of the frontal lobe. For the 
moment, we are particularly interested in three areas: 

• Parietal area AIP, which is the anterior region within a fold of parietal 
cortex called the intra-parietal sulcus, 

• A ventral region of premotor area called F5, and 



• Inferotemporal cortex (IT), a region of the temporal lobe particularly 
associated with object recognition. 

AIP and F5 anchor the cortical circuit in macaque which transforms visual 
information on intrinsic properties of an object into hand movements for grasping it. 
Discharge in most grasp-related F5 neurons correlates with an action rather than with 
the individual movements that form it so that one may relate F5 neurons to various 
motor schemas corresponding to the action associated with their discharge: 

The FARS (Fagg-Arbib-Rizzolatti-Sakata) model [7] addresses key data on F5 and 
AIP from the labs of Giacomo Rizzolatti in Parma and Hideo Sakata in Tokyo, 
respectively. In the FARS model, area cIPS (another parietal area – the details do not 
matter for this exposition) provides visual input to parietal area AIP concerning the 
position and orientation of the object's surfaces. AIP then extracts the affordances the 
object offers for grasping (i.e., the visually grounded encoding of “motor 
opportunities” for grasping the object, rather than its classification [8]). The basic 
pathway AIP → F5 → F1 (primary motor cortex) of the FARS model then transforms 
the (neural code for) the affordance into the coding for the appropriate motor schema 
in F5 and thence to the appropriate detailed descending motor control signals (F1). 

Going beyond the empirical data then available, FARS [7] stressed that there may 
be several ways to grasp an object and thus hypothesized (a) that object recognition 
(mediated by IT) can affect the computation of working memory, task constraints and 
instruction stimuli in various parts of prefrontal cortex (PFC), and (b) that strong 
connections from PFC can bias the selection in the AIP → F5 pathway of which grasp 
to execute. The two major paths from visual cortex via parietal cortex (e.g., AIP) and 
inferotemporal cortex (e.g., IT) are labeled as the dorsal and ventral paths, 
respectively. The dorsal path is concerned with the “how” or parameterization of 
action, while the ventral path encodes the “what” or knowledge of action, appropriate 
to planning a course of action rather than the fine details of its execution. 

To proceed, we must note the discovery of a very significant subset of the F5 
neurons related to grasping – the mirror neurons. These neurons are active not only 
when the monkey executes a specific hand action but also when it observes a human 
or other monkey carrying out a similar action. These neurons constitute the "mirror 
system for grasping” in the monkey and we say that these neurons provide the neural 
code for matching execution and observation of hand movements. (By contrast, the 
canonical neurons – which are the F5 neurons that actually get modeled in FARS – 
are active for execution but not for observation.) A mirror system for a class X of 
actions is a region of the brain that, compared with other situations, becomes more 
active both when actions from class X are observed and when actions from class X 
are executed. Mirror neurons exist for a range of actions in the macaque monkey, and 
brain imaging experiments have demonstrated a mirror system for grasping in the 
human, but we have no single neuron studies proving the reasonable hypothesis that 
the human mirror system for grasping contains mirror neurons for specific grasps. In 
work not reported here, we are extending our models of the mirror system [9, 10] 
from hand movements to action recognition more generally. Our prior models are 
based on neural networks for recognition of trajectory of the hand relative to an 
object. They use an object-centered coordinate system to recognize whether the hand 
is on track to perform a particular action upon the object, which may explain data in 
[11]. 



1.4 From Mirror Neurons to the Mirror System Hypothesis 

Area F5 in the macaque is homologous to area 44 in the human, part of Broca’s area, 
an area normally associated with speech production. Yet this area in humans contains 
a mirror system to grasping. These data led Arbib & Rizzolatti [12] to develop the 
Mirror-System Hypothesis – Language evolved from a basic mechanism not 
originally related to communication: the mirror system for grasping with its capacity 
to generate and recognize a set of actions. More specifically, human Broca’s area 
contains a mirror system for grasping which is homologous to the F5 mirror system of 
macaque, and this provides the evolutionary basis for language parity – namely that 
an utterance means roughly the same for both speaker and hearer. 

This provides a neurobiological “missing link” for the hypothesis that 
communication based on manual gesture preceded speech in language evolution. 

Arbib [13] has amplified the original account of Rizzolatti and Arbib to 
hypothesize seven stages in the evolution of language. Rather than offer details here, 
we simply note the synthesis of ideas on the dorsal and ventral pathways with the 
concept of mirror neurons and schema assemblages provided by [14]. 
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Fig. 1. Words link to schemas, not directly to the dorsal path for actions (from [14]). 

Saussure [15] distinguishes the Signifier from the Signified (or words from 
concepts), but then highlights the “Sign” as combining these with the linkage between 
them. Our action-oriented view is that the basic concepts are realized as the 
perceptual and motor schemas of an organism acting in its world, and that that there is 
no direct labeling of one word for one concept. Rather, the linkage is many-to-one, 
competitive and contextual, so that appropriate words to express a schema may vary 
from occasion to occasion, both because of the assemblage in which the schema 
instance is currently embedded, and because of the state of the current discourse. Let 
us diagram this in a way which makes contact with all that has gone before. The lower 
2 boxes of Figure 1 correspond to words and concepts, but we now make explicit, 
following the Mirror System Hypothesis, that we postulate that a mirror system for 
phonological expression (“words”) evolved atop the mirror system for grasping to 



serve communication integrating hand, face and voice. We also postulate that the 
concepts – for diverse actions, objects, attributes and abstractions – are represented by 
a network of concepts stored in LTM, with our current “conceptual content” formed 
as an assemblage of schema instances in Working Memory (WM – compare the STM 
of VISIONS). Analogously, the Mirror for Words contains a network of word forms 
in LTM and keeps track of the current utterance in its own working memory. 

The perhaps surprising aspect of the conceptual model shown here is that the arrow 
linking the “Mirror for Actions” to the “Mirror for Words” expresses an evolutionary 
relationship, not a flow of data. Rather than directly linking the dorsal action 
representation to the dorsal representation of phonological form, we have two 
relationships between the dorsal pathway for the Mirror for Actions and the schema 
networks and assemblages of the ventral pathway and prefrontal cortex (PFC). The 
rightmost path in Figure 1 corresponds to the paths in FARS whereby IT and PFC can 
affect the pattern of dorsal control of action. The path just to the left of this shows that 
the dorsal representation of actions can only be linked to verbs via schemas. 

Rather than pursuing the study of brain mechanisms further, we work within the 
framework provided by [6] to ask the following: “If we extend our interest in vision 
from the recognition of the disposition of objects in static scenes to the relations 
between agents, objects and actions dynamic visual scenes, what sort of 
representations are appropriate to interface the visual and language systems?” 

2 SemRep: A Semantic Representation for Dynamic Visual Scenes 

SemRep is a hierarchical graph-like representation of a visual scene, whether static or 
dynamically extended over time (an episode). A SemRep graph structure represents 
the semantics of some of the cognitively salient elements of the scene. We see 
SemRep as an extension of the schema assemblages generated by the VISIONS 
system, but with the crucial addition of actions and of extension in time. Only 
cognitively important events are encoded into SemRep while others are simply 
discarded or absorbed into other entities. The same scene can have many different 
SemReps, depending on the current task and on the history of attention. A prime 
motivation is to ensure that this representation be usable to produce sentences that 
describe the scene, allowing SemRep to bridge between vision and language. 

The structure of SemRep does not have to follow the actual changes of an event of 
interest, but may focus on “conceptually significant changes” – a crucial difference 
from a sensorimotor representation, where motor control requires continual tracking 
of task-related parameters. For example, an event describable by the sentence “Jack 
kicks a ball into the net” actually covers several time periods: [Jack’s foot swings]  
[Jack’s foot hits a ball]  [the ball flies]  [the ball gets into the net]. Note that 
[Jack’s foot swings] and [Jack’s foot hits a ball] are combined into [Jack kicks a ball], 
and [the ball flies] is omitted. This taps into a schema network, which can use stored 
knowledge to “unpack” items of SemRep when necessary. On the other hand, a 
Gricean convention makes it unlikely that SemRep will include details that can be 
retrieved in this way, or details that are already known to speaker and hearer. 



The same principle is applied to the topology of SemRep entities. The arrangement 
of conceptual entities and their connections might or might not follow that of the 
actual images and objects. A description “a man without an arm”, for example, does 
not exactly match an actual object setting since it encodes the conceptual entity of an 
arm which is missing in the actual image. This relates to the previous point: one may 
need to include what is not in the image to block standard inferences in cases where 
they are inappropriate. This is akin the notion of inheritance in semantic networks. 

Similarly, an event or entity with higher cognitive importance – or “discourse 
importance”, what the speaker wishes to emphasize for the hearer – will be assigned 
to a higher level in the hierarchy independently of the methodology by which the 
entity is specified. For instance, even if the vision system had specified MAN first 
and this led to the zooming in on the face, FACE might be ranked higher in SemRep 
than MAN if the former is currently of greater interest. 

  
 

 
Fig. 2: Top: A picture of a woman hitting a man (original image from “Invisible Man Jangsu 
Choi”, Korean Broadcasting System). Bottom: A SemRep graph that could be generated for the 
picture. This might yield the sentence “A pretty woman in blue hits a man.” 

In order to encode the various conceptual entities and their relationships, SemRep 
structure takes the form of a graph structure. The two major elements of a SemRep 
graph are ‘node’ and ‘relation (directed edge)’. Agents and various types of objects 
are usually represented as nodes, but we also use nodes to represent attributes. 
Relationships between nodes include actions linking agent and patient, spatial 
configuration, possessive relationship, movement direction or pointer which indicates 
the semantically identical node are represented as relations, as well as the relation 



between a node and its attributes. As mentioned above, a vision system can be one of 
the systems that create SemRep structure by imposing nodes and relations upon a 
visual image (or “videoclip”). An area interesting enough to capture attention is 
linked to a node (or a relation if an action is happening in that area) and then relations 
are specified among the found nodes, presumably by shifting attention. While most 
types of node and some types of relation – such as spatial, possessive, attributive 
relations – are established by static (spatial) analysis, action relations require dynamic 
(spatio-temporal) analysis. 

Both nodes and relations may be attached to more detailed semantic descriptions 
defined as “conceptual structures”. The properties of a recognized object are attached 
to a node for the object, and the semantics of an action are attached to an action 
relation. The attached concepts will later be translated into words by the language 
system. A relation includes the sets it relates and so a verb is not just a label for an 
action but incorporates restrictions on its slot fillers. However, the SemRep graph is 
not labeled with words but with more abstract descriptors, allowing the same graph to 
be expressed in multiple ways within a given language. Thus the concept YOUNG 
FEMALE could be translated into ‘girl’, ‘woman’ or even ‘kid’ and the action 
concept HITTING WITH HAND could be translated into ‘hit’, ‘punch’ or ‘slap’. 
Again, the configuration where object A is placed vertically higher than B can be 
expressed as “A is above B”, “B is below A”, “A is on B”, etc. 

The action concept HIT may involve properties such as VIOLENT MOTION, 
BODY CONTACT, and CAUSING PAIN, and these properties implicitly show that 
the encoded concept describes an action. However, some of these processes may be 
directly perceptual (i.e., generated directly by the visual system) while others may be 
more inferential. It might be claimed [16] that mirror neurons will link action 
recognition to our own experience, so CAUSING PAIN might be perceived 
“directly”, while the woman’s ANGER might either be perceived directly or be more 
inferential. 

Thus we view SemRep as providing a graphical structure which encompasses one 
analysis which captures a subset of the agents, objects, actions and relationships that 
may be present in a given (temporally extended) visual scene. Nodes in SemRep may 
also be given a significance value which expresses the importance of a particular 
aspect of the scene. Thus the same scene may be described by “John loves Mary” or 
“Mary is loved by John” depending on whether the focus (higher significance value) 
is given to John or Mary, respectively. 

3. Template Construction Grammar (TCG) 

Where many linguists operate within the framework of generative grammar (e.g., 
[17]), we work within the framework of construction grammar (e.g., [18, 19]). 
Constructions are form-meaning pairings which serve as basic building blocks for 
grammatical structure – each provides a detailed account of the pairing of a particular 
syntactic pattern with a particular semantic pattern, including phrase structures, 
idioms, words and even morphemes. By contrast, in generative grammar, meaning is 
claimed to be derived from the systematic combination of lexical items and the 



functional differences between the patterns that constructions capture are largely 
ignored. 

Generative grammar distinguishes the lexicon from the grammar, which is seen as 
having three separate components – phonological, syntactic and semantic – with 
linking rules to map information from one component onto another. The rules of 
grammar are said to operate autonomously within each component, and any “rule 
breaking” within a particular language is restricted to idiosyncrasies captured within 
the lexicon. But what of idiomatic expressions like kick the bucket, shoot the breeze, 
take the bull by the horns or climb the wall? Should we consider their meanings as a 
supplement to the general rules of the syntactic and semantic components and their 
linking rules? Instead of this, Fillmore, Kay & O’Connor [20] suggested that the tools 
they used in analyzing idioms could form the basis for construction grammar as a 
new model of grammatical organization, with constructions ranging from lexical 
items to idioms to rules of quite general applicability [18]. Many linguists have teased 
out the rule-governed and productive linguistic behaviors specific to each family of 
constructions. Constructions, like items in the lexicon, cut across the separate 
components of generative grammar to combine syntactic, semantic and even in some 
cases phonological information. The idea of construction grammar is thus to abandon 
the search for separate rule systems within syntactic, semantic and phonological 
components and instead base the whole of grammar on the “cross-cutting” properties 
of constructions. 

Going beyond this “intra-linguistic” analysis, we suggest that “vision 
constructions” may synergize with “grammar constructions” in structuring the 
analysis of a scene in relation to the demands of scene description [6] in a way which 
ties naturally to our discussion of VISIONS. We argue that the approach to language 
via a large but finite inventory of constructions coheres well with the notion of a large 
but finite inventory of “scene schemas” for visual analysis. Each constituent which 
expands a “slot” within a scene schema or verbal construction may be seen as a 
hierarchical structure in which extended attention to a given component of the scene 
extends the complexity of the constituents in the corresponding part of parse tree of a 
sentence. This enforces the view that visual scene analysis must encompass a wide 
variety of basic “schema networks” – more or less abstract SemReps in the 
conceptualization of the previous sentence – in the system of high-level vision, akin 
to those relating sky and roof, or roof, house and wall in the VISIONS system. Of 
course, we do not claim that all sentences are limited to descriptions of, or questions 
about, visual scenes, but we do suggest that understanding such descriptions and 
questions can ground an understanding of a wide range of language phenomena.  

We are currently implementing parsing and production systems for our own 
version of construction grammar, Template Construction Grammar (TCG). TCG 
adopts two major policies of conventional construction grammar (CG): each 
construction specifies the mapping between form and meaning, and the systematic 
combination of constructions yields the whole grammatical structure. However, in 
TCG, the meaning of an utterance is given as a SemRep graph (with suitable 
extensions to be provided in further work). A SemRep may correspond to one or more 
sentences, basically by covering the relevant portion of the given SemRep with a set 
of “small” subgraphs, where each is chosen such that a construction is available 
which expresses that subgraph in the given language. Figure 3 shows a construction 



defined in TCG, exemplifying the links that indicate which part of a “SemRep 
template” connect to which slot in a text form. Each construction encodes the 
specification of what can be mapped to which text/slot, and the mapping is assumed 
to be bidirectional – it can be used in production of a sentence as well as for 
comprehension. Most other computational approaches to CG, such as Fluid 
Construction Grammar (FCG) [21], are based on the use of predicate logic rather than 
graphs as the basis for constructions. 

 

 
 

Fig. 3. An example ‘[subject] [verb] [object]’ construction (a very general construction) in 
TCG. The template is an “abstract” SemRep, i.e., a graph like a SemRep but with either generic 
or (not in this case) specific labels on the edges and nodes, with each linked to a text or an 
empty slot for which there may be restrictions as to what can serve as slot fillers. 

In production mode, the template acts to match constraints for selecting proper 
constructions by being superimposed on the SemRep graph that is going to be 
expressed in words. The semantic constraint of each construction is considered to be 
encoded in the template since the template also contains concepts as well as the 
topology of a SemRep graph. In comprehension mode, the template provides a frame 
where the interpreted meaning builds up as parsing progresses. The details of the 
interpreted SemRep graph are filled with the meaning of the constructions found by 
matching with the currently processed text (or word) one by one. Originally, form of 
each construction has to be a series of phonemes that would be combined into words, 
but it is assumed that these phonemes are already properly perceived and processed, 
and the correct words are given in a text form. 

As mentioned above, the template is an (abstract) SemRep graph. The matching 
process in production mode is done by comparing the template of a construction to 
the given SemRep graph. The contents (given as the attached concepts) of nodes and 
relations and the connective structure of nodes and relations is considered in the 
process. The construction with the most ‘similar’ template will be chosen over other 
constructions, though provision must be made for backtracking. Note, too, that the 
similarity might be to a subgraph bottom up or a set of high-level nodes top-down – 
choices compete and cooperate till a spanning structure is formed. “Similarity” for the 
attached concepts is decided, for example, by how many common attributes they 
share – SemRep includes (though we have omitted the details from this paper) the 
ability to capture concepts by the superimposed distributed representation of 
attributes. Again, similarity for the structure of the template is decided by how close 



the topology of the template is to the given SemRep graph – the number of nodes and 
relations has to be matched as well as the connections between them.  

 
Fig. 4: SemRep graph A represents a ‘black armchair’. Graphs B and C are “similar” to graph 
A but D and E are not. 

Embedded structure is another topological feature to be considered. Matching 
requires that the template of a construction is a “subset” of the given SemRep graph. 
In other words, the template should not be more specific than the graph being 
compared. This rule applies to both concepts and topology. For example, in Figure 4 
graph C is an appropriate match to graph A since ARMCHAIR is a kind of CHAIR 
and BLACK is a kind of COLOR and the topology is the same as that of graph A. 
Graph B is also appropriate because the topology is less specific. Graph D is 
inappropriate since the relations (ATTRIBUTE and POSSESSION) do not match 
each other; and Graph E is inappropriate since SOFA is a more detailed concept than 
ARMCHAIR. Among the appropriate graphs B and C, graph C will win over the 
competition because it is more similar to graph A than is B. If there were a graph 
identical to graph C except that it had BLACK node instead of COLOR, then this 
graph would have been the winner.  

In the current version of TCG, the input text is assumed to be preprocessed and 
segmented into morphemes at a level that corresponds to the construction repertoire. 
Matching text can be somewhat simpler than matching templates since in matching 
text there is no need to perform complex comparison of graph structures. This is not 
to minimize the various obstacles to comprehending a sentence offered by anaphor, 
ellipsis, and ambiguity in interpretation, etc. And consider idiomatic expressions. For 
example, the idiom “a piece of cake” might be processed with a single construction 
which has the whole text in its form and the semantic meaning of “being easy”. But it 
also can be processed with one or more general constructions. Allowing constructions 
with more specific information to be selected provides one possible default (in this 
case, idiomatic constructions would win over general constructions) but the eventual 
system must provide mechanisms for broader context to settle the issue: in parsing 
“Would you like a piece of cake?”, the idiomatic construction is inappropriate. 

In order to apply constructions hierarchically, each construction is assigned a type 
which specifies a sort of grammatical category for the construction, but such a type is 
not the highly abstract syntactic category of generative grammar, but is more like an 
emergent categorization rule generated by the relationship between constructions in 
the repertoire. Each empty slot in the form of a construction indicates the type of the 
construction that should fill the slot. 

When translating the given SemRep graph into a sentence, the graph would 
activate a number of constructions with matching templates. In TCG, the construction 
with the best-matching template will be selected and its form will be output as the 



translated text, but if the form has any empty slot, it should be filled first. An empty 
slot specifies not only the type of construction that is expected, but also indicates the 
area of SemRep that is going to be considered for comparison; each slot is linked to a 
pre-specified area in the template, and only an area of SemRep corresponding to that 
area is considered for finding matching constructions for the slot. The link between 
the template and form provides the form-meaning pairing of a construction in TCG. 

Since constructions are bidirectional, the same set of constructions used in 
production of sentence are also used in comprehension. All of the matching (or 
activated) constructions are eligible for translation until further processing reveals 
ineligibility. As input text is read, it is compared to the forms of activated 
constructions and the constructions with unmatched forms are ruled out. Ambiguity 
may also be resolved based on contextual information, which is in this case is the 
translated SemRep graph. However, top-down influences in sentence comprehension 
are beyond the scope of the current version of TCG. 

 
Fig. 5. The sentence “A pretty woman in blue hits a man” and the corresponding construction 
architecture. The language system would translate the SemRep graph in Figure 2 into the above 
sentence. During the process, constructions will be built into the hierarchical structure shown in 
the figure. 

The type of the activated construction is also treated as input to the system and the 
matching mechanism is very similar to that for the text case, except that it is matched 
with the slot in the form rather than the text. For example, if an input sentence is 
given as “A big dog barks” then the first word “a” would activate at least two 
constructions, “a [adjective] [noun]” and “a [noun]” (or “[determinant] [adjective] 
[noun]” and “[determinant] [noun]” with “a” activating a construction of type 
[determinant]). Other configurations are possible, depending on the construction 
repertoire.  

Given the activated constructions “a [adjective] [noun]” and “a [noun]”, the next 
word “big” would activate a construction whose type is [adjective], ruling out the 
second construction due to mismatch of the construction type required in the slot. 



Figure 5 shows one of the sentences that can be generated from the SemRep graph 
shown in Figure 2 and the resulted hierarchical build-up of constructions. Note that 
because of the multiple embedded structures in the WOMAN node, constructions for 
both “pretty woman” and “woman in blue” are present at the lowest level. These 
constructions are then combined into one expression “pretty woman in blue”. The set 
of constructions might differ from those of other speakers to some extent. In that case, 
the constructions could be organized in a different structure and the hierarchy among 
constructions might change.  

 

Fig. 6. Abstract constructions used for translation. These constructions are assumed to encode 
grammatical information.  

Figure 6 and Figure 7 provide detailed description for all the constructions used in 
this example. Some auxiliary information such as activation values, the tense or 
number is not shown but is assumed to be encoded in the templates (more precisely in 
the concept attached to the corresponding node or relation) of the constructions. 
Although activation value is not considered here, it is – as we noted earlier – 
important in determining the sentence structure – whether it is active or passive. For 
some constructions, such as SVO or REL_SVO, it is assumed that the activation value 



for the node corresponding to the agent of an action is higher than that of the patient 
node and this would lead to produce an active voice. Furthermore, construction 
VERB_3 is an example of the negation of attributes. Only a single third object is 
eligible for the conjugation specified in the construction and this grammatical 
constraint is set by adding negation attributes. Relatively abstract constructions with 
complex templates and slots in the form are shown in Figure 6 and constructions 
corresponding to single words are shown in Figure 7. We leave it to the reader to 
“simulate” the processes of parsing/comprehension and production whereby TCG 
finds the constructions which convert the SemRep of Figure 2 into the sentence 
considered here, and vice versa. 

 

 
Fig. 7. This figure illustrates the sort of simple construction that corresponds to an element in 
the lexicon. These constructions are assumed to encode semantic information and can be 
directly translated into words. 



4 Conclusions 

4.1 How SemRep Reshapes Construction Grammar 

Template Construction Grammar (TCG) shares basic principles with other 
construction grammar approaches but is explicitly designed to link the semantics of 
sentences to the representation of visual scenes. However, the use SemRep involves a 
sufficiently general graphical structure that we are confident of its extensibility to 
their meanings. SemRep simplifies production and comprehension. Since the task 
semantics are given as SemRep graphs, the sentence production process is reduced to 
a general task of matching graphs and the interpreted meaning of a sentence can be 
directly built by the combination of templates of the activated constructions in the 
comprehension process. 

In addition to template and form pairings, constructions in TCG also encode 
auxiliary information such as type which specifies the grammatical role that the 
construction plays. With this information at hand, the language system can build and 
parse various kinds of grammatical structures appropriate to the task. In any case, the 
detailed resulting structure is largely dependent on the construction repertoire of the 
system. The repertoire is maintained in a very dynamic and flexible way, well 
representing the grammatical constitution and usage pattern that language shows. 

Moreover, the concept attached to a node and relation in SemRep graph in TCG 
formalism exploits the combination of attributes or properties, providing a key 
comparison mechanism among conceptual entities. During production of sentences, a 
given graph activates a number of constructions and is compared with a number of 
constructions for similarity. Only the winner is to be chosen to produce sentences. 

On the other hand, in comprehension mode, a textual form is basically what 
activates constructions by an inverse matching mechanism. In this case, the form, not 
the template, is what is being compared against the input. When proper constructions 
are chosen, a new SemRep graph would be built from the templates of the 
constructions. When multiple constructions are to be combined into a single node or 
relation, the attributes of the concept of that entity will be added up, getting more 
specific. In this way, the transformation between different kind of hierarchical 
structures (back and forth between SemRep and sentence structure) can be executed. 

4.2 Another Perspective 

The literature on brain mechanisms of vision, and on forms of representation of visual 
information is, of course vast, and beyond the scope of this article. A subfield of great 
relevance here is that of vision in embodied agents, with an interest in linking explicit 
computational analysis of vision in robots to studies of the role of vision in animal 
and human behavior. Clearly, this field includes our interest in computational models 
of the control of action and of mirror systems which are involved in both the self’s 
control of action and its vision-based recognition of actions conducted by others. In 
particular, then, we need to situate our work within the set of studies which unite the 



study of vision in embodied agents with studies of communication (especially using 
language) between such agents concerning their visual perceptions (e.g., [22-24]. 
Another area of concern is discussion of the extent to which construction grammar 
can be linked to implementations based on neural networks or brain mechanisms (e.g., 
[25, 26]). However, in this paper, we restrict our discussion to one paper, [27], from 
the group of Luc Steels, a group which has not only been a leader in linking the study 
of vision in embodied agents with studies of communication, but has done so within 
the framework of simulated evolution (though not linked to neurobiology), and has 
developed its own version of construction grammar, Fluid Construction Grammar 
(FCG).  

Steels and Loetzsch [27] use interactions between robots to study the effect of 
perspective alignment on the emergence of spatial language. Although the authors 
state that their “experiments rest on the Fluid Construction Grammar framework [21], 
which is highly complex software for language processing”, there is no syntax in the 
language studied in their paper – rather, visual scenes are described simply by a list of 
words which are associated with one or more categories applicable to the observed 
scene. We postpone a comparison (and, perhaps integration) of TCG and FCG for 
another occasion, and instead focus on scene representation in [27] and then compare 
it with SemRep to help clarify directions for future work.  

[27] employs an actual vision system to generate scene descriptions from visual 
input provided by cameras mounted on 2 or more AIBO robots. In a typical episode, 
two robots are placed in a cluttered room and move about till each has both the other 
robot and a ball in their visual field; they then stay still while a human uses a stick to 
move the ball from one position to the other. Each robot generates a description of the 
ball’s trajectory using Cartesian coordinates for the ground plane, with the robot at the 
origin and its direction of gaze determining the vertical axis. The descriptors given are  

(1) x of start point, distance to start point, x of end point, y of end point,  
distance to end point, angle to end point, angle of movement, length of  
trajectory, change in x, change in y, change in angle, and change in distance. 

The key property of language addressed in [27] is that of perspective alignment – 
different observers may describe the same scene in different terms – does “on the 
left”, for example, mean “on the speaker’s left” or “on the hearer’s left”? To address 
this challenge, each robot is programmed to use its vision to judge the position and 
orientation of the other robot and then estimate the above coordinates (1) as seen from 
the other robot’s viewpoint. This perspective transformation is a simple translation 
and rotation in Euclidean space, but the result is an estimate because the robot’s 
assessment of the relevant coordinates may contain errors and these are unlikely to 
correlate with errors of the other robot. 

Neither words nor categories for describing the scene are provided in advance. 
Rather, simple discriminant trees are used to create categories: every feature in (1) has 
a discrimination tree which divides the range of possible values into equally sized 
regions, and every region carves out a single category. Letter strings can be randomly 
generated to provide “words”, and weighted, many-to-many links between words and 
categories can be stored in a bidirectional associative memory [28]. However, from 
this random initial state, interactions between 2 or more robots allow them to end up 
with a set of categories, and a set of words associated with those categories, that allow 
any 2 robots to communicate effectively about a scene, adopting either their own 



perspective or that of the other robot. As noted, each “utterance” consists of a small 
set of words; these activate certain categories. A robot will strengthen its current 
“knowledge” if it can match the word string it “hears” to the scene it “sees” or to its 
estimated perspective for the other. If neither match is possible, it will change its 
categories and/or vocabulary and/or bidirectional association between words and 
concepts to better match one perspective with the utterance. 

More specifically, learning extends over thousands of episodes. After a successful 
exchange, the score of the lexical entries that were used for production or parsing is 
increased by 0.05. At the same time, the scores of competing lexical entries with the 
same form but different meanings are decreased by 0.05 (lateral inhibition). In case of 
a failure, the score of the involved items is decreased by 0.05. This adjustment acts as 
a reinforcement learning mechanism and also as priming mechanism so that agents 
gradually align their lexicons in consecutive games. Similar mechanisms apply to the 
updating – and eventual alignment – of categories in each robot on the basis of 
success or failure in each exchange. 

With this, we use our understanding of [27] to sharpen our understanding of 
SemRep and to pose challenges for future research:  

Rather than use a very limited type of description –how the same object, the ball, 
moves in each episode – we are concerned with a flexible description of an episode, 
or small number of contiguous episodes, that labels the visual field with concepts 
related to agents, objects and actions and their attributes, and links them in 
hierarchical ways. In other words, where [27] focuses on a single intransitive 
movement (the ball rolls), we have a special concern with transitive actions, based on 
evaluating the movement of an agent with respect to an object or other agent. 

We have not implemented a vision front-end, but note that in fact the language-
related work in [27] does not make essential use of the vision front-end, since the 
“real processing” starts with the Cartesian coordinates provided in (1) both from the 
robot’s own perspective and as estimated for the other robot’s perspective. In terms of 
the VISIONS system [4], this would correspond to the converged state of the 
intermediate database, but rather than giving coordinates of a single trajectory in the 
ground plane, an extension of VISIONS would label shapes and edges and their 
relative position and motion in the three-dimensional visual field of the observer. Just 
as [27] uses this description as the basis for extracting a small set of categories, so we 
would use the intermediate database as the basis for constructing a SemRep, while 
noting that the choice of SemRep may depend on attentional factors and task 
relevance [6, 29], including the state of discourse. 

Concepts and words are emergent in [27] through attempts to share descriptions of 
observed scenes. SemRep uses hand-crafted concepts, words and constructions. 

Perspective-taking is almost obligatory in [27] – in all but one experiment (see 
below) each robot must compute the description (1) as seen by the other robot. In 
SemRep, we do not use any such global transformations, but rather rely on a set of 
appropriate “subscene schemas”, so that a portion of the same SemRep could be 
described by “the man to the left of the woman” or, if we take into account the 
orientation of the woman’s body, “the man in front of the woman.” We note the 
further challenge of deciding when two SemReps could apply to the same scene as 
viewed from different perspectives (perhaps with different foci of attention) or, more 
subtly, could describe two different time slices” of a spatially extended scene. 



“Cognitive effort” is defined in [27] as the average number of perspective 
transformations that the hearer has to perform. Their Figure 12 reports an experiment 
which shows (perhaps unsurprisingly) a marked reduction in cognitive effort when 
perspective is marked, i.e., when one of the categories that must be expressed is 
whether the trajectory descriptors in (1) are based on the perspective of the “speaker” 
or the “hearer”. In this experiment, separate words emerged for perspective in 
addition to words where perspective is part of the lexicalization of the predicate. 
Steels and Loetzsch [27] comment that “This is similar to natural language where in 
the ball to my left, my is a general indicator of perspective, whereas in […] come and 
go, perspective is integrated in the individual word” and assert that “this experiment 
explains why perspective marking occurs in human languages and why sometimes we 
find specific words for it.” However, the experiment does not explain this directly, 
since the choice of perspective is added by the authors as an explicit category – thus 
making it likely that words will emerge to express or incorporate this category. 
However, an important evolutionary point is made: if the perspective category or 
word is available (whether through biological or cultural evolution) then processing is 
more efficient, thus giving creatures with access to such items a selective advantage. 
When we turn from robot routines to human development, the question is how the 
child comes to recognize its similarity and difference from others so that terms like 
“my left hand” versus “your left hand” become understood, and then how such spatial 
terms extend from the body to peripersonal space and then to space generally. It is not 
surprising that – just as in the language games described here – different languages 
will describe this extension in different ways.  

We close by a (perhaps surprising) link from the present discussion back to our 
earlier concern with models of the mirror system. Figure 10 of [27] summarizes an 
experiment in which the agents perceive the scene through their own camera but they 
“do not take perspective into account.” In this case, the agents do not manage to agree 
on a shared set of spatial terms. Steels and Loetzsch concludes that this proves that 
“grounded spatial language without perspective does not lead to the bootstrapping of 
a successful communication system.” However, this does not take account of the 
extent to which the results depend on what is built into the system. Other approaches 
are possible. Suppose the room had several distinctive landmarks. Then instead of 
locating the ball in one of the two prespecified Cartesian coordinate systems, one 
could locate the ball in terms of descriptions like “It started close to landmark-3 and 
moved halfway to landmark-7.” (In neural terms, such a description might build on 
the activity of place cells in the hippocampus [30].) Here no perspective 
transformation is involved. The latter approach is more like that taken in the MNS 
models [9, 10]. Instead of describing the movement of the hand in, e.g., retinal 
coordinates, we there described it in object-centered coordinates, thus eliminating the 
issue of perspective-taking. Of course, this does not guarantee that our assumption is 
justified. However, one argument in favor of (but not proving) the assumption is that 
the need for visual feedback for dexterity would provide selection pressure for a 
system that could translate retinal input into such an object-centered (or affordance-
based) view of the hand. 
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